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ABSTRACT

A nonlinear diffusion process known to be effective for image seg-
mentation is analyzed in 1-D. It is shown that it optimally solves
certain edge detection problems. A fast implementation of the al-
gorithm is introduced.

1. INTRODUCTION.

The recent years have seen a great number of exciting develop-
ments in the field of nonlinear diffusion filtering of images. Many
theories have been proposed that result in edge-preserving scale
spaces possessing various interesting properties (see [1, 5, 4, 7, 6]
and many other references in [9]). One striking feature uniting
many of these frameworks–including our own [6]–is that they are
deterministic. Usually, one starts with a set of “common-sense”
principles which an image smoothing operation should satisfy. Ex-
amples of these are the axioms in [1] and the observation in [5]
that, in order to achieve edge preservation, very little smoothing
should be done at points with high gradient. From these principles,
a nonlinear scale space is derived, and then it is analyzed–again,
deterministically. Note, however, that since the objective of these
techniques is usually restoration or segmentation of images in the
presence of noise, a natural question to ask would be:

Do the nonlinear diffusion techniques solve standard
estimation or detection problems? (*)

Affirmative answer would help us understand which technique is
suited best for a particular application, and aid in designing new
algorithms. It would also put the tools of the classical detection
and estimation theory at our disposal for the analysis of these tech-
niques. There has been a shortage of published attempts to address
these issues–most likely, because the complex nature of the non-
linear partial differential equations (PDEs) considered and of the
images of interest make this analysis prohibitively complicated.
Most notable exceptions are [8, 11] which establish a qualitative
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relation between between the Perona-Malik equation [5] and gra-
dient descent procedures for estimating random fields modeled by
Gibbs distributions. In [2], concepts from robust statistics are used
to modify the Perona-Malik equation.

The goal of this paper is to move forward the discussion of
question (*). We consider a very simple nonlinear diffusion (a
variant of those in [6]) which provides a multiscale sequence of
segmentations of its initial condition. We describe an efficient
implementation of the diffusion, requiringO(N logN) computa-
tions in the worst case, whereN is the size of the input signal. We
apply our algorithm to 1-D signals, and describe detection prob-
lems which are solved optimally by this diffusion. All results are
stated without proof due to space constraints. The proofs will be
published in a longer paper, currently in preparation.

2. BACKGROUND AND NOTATION.

A family of systems of ordinary differential equations, called Sta-
bilized Inverse Diffusion Equations (SIDEs), was proposed in [6]
for restoration, enhancement, and segmentation of signals and im-
ages. The (discretized) image to be processed is taken to be the
initial condition for the equation, and the evolution of the equation
provides a fine-to-coarse family of segmentations (i.e., piecewise-
constant approximations) of the image. This family is indexed by
the “scale” (or “time”) variablet, which assumes values from0 to
1. Initially (t = 0), the finest possible segmentation is assumed:
each pixel is a separate region. In the course of evolution, two
neighboring regions are merged whenever the difference between
their intensity values becomes equal to zero (as shown in [6], this
will occur in finite time for every pair of regions). The intensity
valueui inside thei-th region evolves according to

_ui =
1

mi

X
j2Ai

F (uj � ui)pij ; (1)

where _ui is the time derivative ofui; mi is the number of pixels in
the i-th region;Ai is the set of the indices of all the neighbors of
regioni; pij is the length of the boundary between regionsi andj;
F is a function which is monotonically decreasing and continuous
everywhere except at zero; it is an odd function and non-negative
for positive values of the argument.



The usefulness of SIDEs for image segmentation was shown in
[6]; in particular, it was experimentally demonstrated that SIDEs
are robust to noise outliers and blurring. They are considerably
faster than other image processing algorithms based on evolution
equations, since region merging reduces the dimensionality of the
system during evolution.

In this paper, we consider a special case of (1) in 1-D, which
results if one drops the “monotonically decreasing” requirement
onF , and takesF (v) = sgn(v) instead. Specifically, we are in-
terested in the evolution of the following equation:

_u1 =
sgn(u2 � u1)

m1
; _uN =

sgn(uN�1 � uN )

mN

;

_un =
1

mn
(sgn(un+1 � un)� sgn(un � un�1)); (2)

for n = 2; : : : ; N � 1,

with the initial condition

u(0) = u0; (3)

where, as we explain below in Section 5,u0 is either the signal
to be processed or a sequence of logarithms of likelihood ratios.
Both here and in the rest of the paper,N stands for the number of
samples in the signals under consideration. Boldface letters denote
these signals, whose entries are always denoted by the same letter
with subscripts1 throughN : u = (u1; : : : uN )T . Just as in [6],
initially mn = 1, for n = 1; : : : ; N . As soon asui becomes equal
to ui+1, these values stay equal forever, and their equations are
replaced with

_ui = _ui+1 =
(sgn(ui+2 � ui+1)� sgn(ui � ui�1))

mi +mi+1
: (4)

We apply the SIDE (2,3) to binary classification problems.
Given an observationy, the goal is to label each sample as coming
from one of two classes, i.e. to produce a binary signalh whose
entries are zeros and ones. We call any such binary signalh a hy-
pothesis. We denote the set of allN -dimensional hypotheses by
f0; 1gN . If hi 6= hi+1, we say that anedgeis hypothesized at
locationi, and we call sgn(hi+1 � hi) thesign of the edge.

A statisticis simply a function� : IRN �f0; 1gN ! IR. The
optimalhypothesish�(u) for a signalu 2 IRN with respect to�
is

h
�(u)

def
= arg max

h2f0;1gN
�(u;h):

Sometimes it is necessary to choose the best hypothesis among
those whose number of edges does not exceed some constant�:

h
�
��(u)

def
= arg max

h 2 f0; 1gN , h has� or fewer edges
�(u;h):

Note that a hypothesis is uniquely defined by the set of its
edges and the sign of one of the edges. Therefore, binary classi-
fication problems can also be viewed as edge detection problems.
For the problems considered in this paper, the optimal edge loca-
tions will typically be level crossings of some signal. A signalu is
said to have an�-crossingat locationi if (ui � �)(uj � �) < 0,
wherej = minfn: n > i; un 6= �g. We define the hypothesis
generatedby a set of�-crossingsfg1; : : : ; g�g of u as the hypoth-
esis whose edges are atg1; : : : ; g� and for which the sign of the
edge atg1 is equal to sgn(�� ug1 ).

3. SIDE AS AN OPTIMIZER OF A STATISTIC.

The usefulness of the SIDE (2,3) in solving edge detection prob-
lems comes from its ability to maximize certain statistics.

Proposition 1 Fix the initial conditionu0 of the SIDE (2), and
let u(t) be the corresponding solution. Suppose that a statistic�
satisfies two conditions:

1) d
dt

�
�(u(t);h)� hTu(t))

	
= 0;

2) there exists� 2 IR such that,8t � 0, the optimal hypothesis
h�(u(t)) is generated by the set of all�-crossings ofu(t).

Let��(t) be the number of�-crossings ofu(t). Then

h
�
���(t)(u0) = h

�(u(t)):

This proposition says that, if the SIDE is evolved until��(t)
�-crossings remain, then these�-crossings are the optimal edges,
where “optimality” means maximizing the statistic�(u0;h) sub-
ject to the constraint that the hypothesis have��(t) or fewer edges.
It can be verified that��(t) is a non-increasing function of time,
with ��(1) = 0. Unfortunately,��(t) is not guaranteed to as-
sume every integer value between��(0) and0. It can be shown,
however, that even if for some integer� < ��(0) there is not
such that��(t) = �, we can still findh���(u0) using the set of�-
crossings of the solution to the SIDE. If� � ��(u0), then, from
the definitions ofh���(u0) andh�(u0), we immediately have:

Proposition 2 Suppose that� is a statistic which satisfies the two
conditions of Proposition 1. If� � ��(u0), then

h
�
��(u0) = h

�(u0):

4. IMPLEMENTATION.

Our goal is to geth���(u0) for a given number� and a given statis-
tic � satisfying the conditions of Proposition 1. Rather than com-
puting u(t) for all t, we compute the evolution of the set of its
�-crossings, since, as explained in the previous section, this set
is all we need for determiningh���(u0). We do this by using a
different region merging method than that described in [6] and re-
viewed in Section 2. We re-define aregion as the set of samples
between two�-crossings ofu0. We now give a summary of the
algorithm without proof.

1. Initialize. Let A be the set of all�-crossings ofu0, ordered
from left to right, and let�� = ��(0). If �� � �, stop: by
Proposition 2,h���(u0) is generated byA.

2. Compute the energies.Denote the elements of the setA by
g1; : : : ; g�� ; and form�� + 1 regions:(1; g1); (g1 + 1; g2); : : :,
(g��+1; N), where notation(i; j) means a region consisting of
samplesi throughj. Let �ij be defined by:�ij = 1 if i = 1
or j = N , and�ij = 2 otherwise. Define theenergyof (i; j)
asEij =

1
�ij

��Pj

n=i
(u0;n � �)

��.
3. Remove the region with minimal energy.Let (im; jm) be

the region for whichEij is the smallest (if there are several
regions with the smallest energy, choose any one). Re-define
A and�� via

A A\ fim; jmg; ��  the size of the newA:

If �� = � + 1, letB = A. If �� > �, go to step 2.
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Figure 1: Edge detection for a binary signal in Gaussian noise.
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Figure 2: Detection of changes in variance of Gaussian noise.

4. Post-processing.If �� = �, stop: h���(u0) is generated by
A. Otherwise, letb1 andb�+1 be the first and last elements of
the setB, respectively. Leth1, h2, andh3 be the hypotheses
generated byA,B\ fb1g, andB\ fb�+1g, respectively. Then

h
�
��(u0) = arg max

h2fh1;h2;h3g
�(u0;h):

Using fast sorting algorithms [3], it is possible to make this imple-
mentation run inO(

P��(0)+1

��=�
log �� + N) time, which isO(N)

in the best case andO(N logN) in the worst case. By contrast,
the brute-force method of testing every hypothesis with1; : : : ; �
edges has polynomial complexityO(Nmin(�;N��)).

5. EDGE DETECTION PROBLEMS OPTIMALLY
SOLVED BY THE SIDE.

In this section, we exhibit detection problems whose solution is
equivalent to maximizing a statistic satisfying the conditions of
Proposition 1, for any initial condition of the SIDE. These prob-
lems can therefore be solved by the SIDE.

5.1. Two Distributions with Known Parameters.

Let y be an observation of a sequence ofN independent random
variables. Suppose that each random variable has probability den-
sity function (pdf) eitherf(y; �0) or f(y; �1), where�0 and�1 are
known. It is also known that the number of changes between the
two pdf’s does not exceed�; however, it is not known where these
changes occur.

To obtain the maximum likelihood hypothesis [10], we have
to maximize the log likelihood functionX

i:hi=1

log f(yi; �1) +
X
i:hi=0

log f(yi; �0);

where the hypothesish is such that the sampleyi is hypothesized
to be from the pdff(y; �hi). Note that by making the definitions

u0;i = log f(yi; �1)� log f(yi; �0); (5)

we see that the log likelihood is equal to

h
T
u0 +

NX
i=1

log f(yi; �0):

The second term is independent ofh, and therefore maximizing
this function is equivalent to maximizing

�(u0;h)
def
= h

T
u0; (6)

which obviously satisfies the first condition of Proposition 1, for
anyu(t). It can also be easily verified that, for anyu0 2 IRN , the
hypothesish�(u0), optimal with respect to�, is generated by the
zero-crossings ofu0. Thus, the SIDE can be employed for finding
the maximum likelihood hypothesish���(u0), whereu0 is related
to the observationy through (5).

Example 1 Changes in mean in a Gaussian random vector.
In this example,f(y; �j) is the Gaussian density with mean�j
and variance1. We took�0 = 0 and�1 = 1. We assumed that
the right number of jumps,10, is known, and so the stopping rule
for SIDE was��(t) � 10. Figure 1, from top down, depicts the
pure mean sequence with ten changes in mean, a corresponding
observationy, and the edges detected by the SIDE (the bottom
plot will be explained in the next subsection). Note that the result
is extremely accurate, despite the fact that the data is very noisy.
The computations took0:6 seconds on Sparc 10, thanks to the fast
implementation described in Section 4.

Example 2 Changes in variance in a Gaussian random vector.
Now f(y; �j) is a zero-mean Gaussian density with standard devi-
ation�j ; �0 = 1 and�1 = 1:5. The changes between the two are
at the same locations as the jumps in the previous example (see the
top plot of Figure 1). The top plot of Figure 2 shows an observa-
tion y. Again, we assume that the number of changes is known.
The bottom plot of Figure 2 shows the changes detected by the
SIDE, depicted as a binary sequence of�0’s and�1 ’s. In addition
to being very accurate, the computations took just 0.6 seconds.

5.2. Two Gaussian Distributions with Unknown Means.

Suppose thatf(y; �j) is the Gaussian density with mean�j and
variance�2. Let h be a hypothesis, and letY be a sequence of
N random variables which are conditionally independent givenh,



with thei-th random variableYi having conditional pdff(y; �hi).
Let � be an upper bound on the number of edges inh. LetK be
the number of zeros inh, and define�1 = �

�1��0

p
N . Let the

prior knowledge be as follows:

�0 andh are unknown;

�, �1, and� are known;

K is a random variable with the following discrete Gaussian
probability mass function:

pr(K = k) = C exp

(
�1

2

�
k � N

2

�1

�2
)
; k = 1; : : : ; N�1;

whereC is a normalization constant.

Given an observationy of Y, we seek the best hypothesis in the
generalized likelihood ratio sense [10]: the maximum likelihood
estimates of the hypothesis and�0 are calculated for each value
of K, and these estimates are then used in a multiple hypothesis
testing procedure to estimateK. In other words, we seek

(ĥ; �̂0; K̂) = arg max
h;�0;k

(log f1(yjh; �0; k) + pr(K = k));

wheref1 is the conditional pdf ofY. After simplifying this for-
mula, we obtain that̂h must maximize

�(y;h)
def
= h

T
y � N � k

N

NX
i=1

yi:

Note that d
dt

�
�(u(t);h)� hTu(t))

	
= N�k

N

PN

i=1
_ui(t) = 0,

as verified by summing up equations (2). Therefore,� satisfies
the first condition of Proposition 1, for any solutionu(t) of (2). It
can also be easily shown that the second condition is satisfied for
any suchu(t), with � = 1

N

PN

i=1
u0;i. Thus, to findĥ, we have

to evolve the SIDE whose initial condition is the observed signal:
u0 = y. We stress here that, even though our model assumes the
knowledge of� and�1, they are never used in computingĥ, hence
the title of this subsection is justified. The only parameter required
by the SIDE is�.

The experimental result for the data of Example 1 is shown in
the bottom plot of Figure 1. Note that the result is still very good
and is very close to the maximum likelihood result with known
parameters (the two differ in only two pixels out of the thousand).

6. CONCLUSIONS AND CURRENT RESEARCH.

We analyzed a nonlinear diffusion and showed that it produces
maximum likelihood solutions for certain edge detection problems.
We also presented its fast implementation. We are currently inves-
tigating whether similar statements can be made for signals whose
samples come from more than two probability distributions.

Even though all analysis done in this paper concerned 1-D sig-
nals, we believe that our technique will be most useful in image
processing. This is evidenced by Figure 3 which shows the results
of running an algorithm, similar to the one described in Section 4,
in 2-D. The data on the left is a very blurry and noisy synthetic
aperture radar image of two textures: forest and grass. The algo-
rithm was stopped when two regions remained, and the resulting
boundary (shown superimposed onto the logarithm of the original
image) is extremely accurate. The logarithm of a similarly blurry
and noisy ultrasound image of a thyroid is shown on the right, with
the boundary detected by the SIDE.
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Figure 3: Edge detection in 2-D.
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