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ABSTRACT

This paper describes two-dimensional, non-separable,
piecewise polynomial convolution for image
reconstruction. We investigate a two-parameter kernel
with support [-2,2]x[-2,2] and constrained for smooth
reconstruction. Performance reconstructing a sampled
random Markov field is superior to the traditional one-
dimensional cubic convolution algorithm.

I. INTRODUCTION

Image reconstruction is the process of defining a spatially
continuous image from a set of discrete samples. It is an
important process in image processing theory and is
fundamental to many digital image processing operations.
Operations such as translation, scaling, rotation, and
geometric correction require image values at locations for
which no sample is available. The image values at these
locations usually are taken to be the convolution of
neighboring image samples and a convolution kernel.
Common methods for reconstruction include Nearest
Neighbor, Linear Interpolation, and Cubic Convolution.

Cubic convolution (CC) has been used for image
reconstruction since the 1970’s[1]. The usual cubic
convolution kernel is a separable, symmetric, piecewise
cubic polynomial defined on finite support [-2,2].
Parameteric Cubic Convolution (PCC) is a popular
approach in which constraints are imposed to insure
continuity and smoothness[4]. Because PCC provides a
good compromise between computational complexity and
reconstruction accuracy, it is widely used in remote
sensing [5]. However, the traditional PCC kernel is a
separable product that might not be optimal for two-
dimensional images.

 In this paper, we investigate the non-separable, symmetric,
piecewise polynomial convolution kernel defined on [-2,2]
x [-2,2]. In order to insure smooth reconstruction, we
impose seven constraints on the polynomial and reduce the

number of free coefficients to 2. We then study the role of
these two parameters.

The organization of this paper is as follows: Part II
formulates the two-dimensional non-separable convolution
kernel; Part III gives mathematical analyses of the best
value of the two parameters in the convolution kernel; and
Part IV is the conclusion and description of future work.

II.  TWO-DIMENSIONAL PIECEWISE
POLYNOMIAL CONVOLUTION

II. A. Traditional Separable Kernel

The general separable symmetric cubic convolution kernel,
which is a polynomial of x and y with degree six, has the
form f(x,y)=r(x)r(y), where

r(x) = 1 <

                                          otherwise.
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To insure smooth, continuous reconstruction and unit
response, several constraints are imposed on this kernel:

1. r( )2 0= ;

2. ′r (2) = 0;

3. r( )1 0= ;

4.  r(x) is continuous at x=1;

5. ′r (x)  is continuous at x=1;

6. ′r (x) is continuous (thus must be equal to zero) at x=0;

7. ∀
∞

∞

∑x,  r(x - n) = 1
n=-

+

.



These seven constraints help to reduce the number of
coefficients from eight to one.

II. B. Two-dimensional Kernel

We investigate the piecewise polynomial with degree six
defined on [-2,2]x[-2,2].  Assuming symmetry about the
origin, we consider the four pieces shown in Figure 1 and
defined as:

Figure 1. 2-D non-separable convolution kernel defined
on [0,2]x[0,2]. This can be generalized to [-2,2]x[-2,2]
by symmetry: r(x,-y)=r(x,y) and r(-x,y)=r(x,y).
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The total number of free coefficients is 28x4=112. If we
assume that r(x,y)=r(y,x), then the number of free
coefficients is reduced to 56. The constraints  in the one
dimensional case are generalized as:

1. ∀ ∀x,  r(x,2) = 0 and y,  r(2,y) = 0;

2. ∀ = ∀x,  
   r(x,y)

   y
  and y  

   r(x,y)

   x
= 0;

y=2 x=2

∂
∂

∂
∂

0 ,

3. ∀ ∀x,  r(x,1) = 0 and y,  r(1,y) = 0;

4. r(x,y) is continuous at r(x,1) and r(1,y);

5. ∀ ∀y,
   r(x,y)

   x
and x,  

   r(x,y)

   y
are continuous;

x=1 y=1

∂
∂

∂
∂

6. ∀ ∀y,
   r(x,y)

   x
and x,  

   r(x,y)

   y
are continuous;

x=0 y=0

∂
∂

∂
∂

7. ∀
∞

∞

=−∞

+∞

∑∑x,y r(x - m,y - n) = 1
n=-

+

m

.

These seven constraints and the following two propositions
reduce the free coefficients from 56 to 2.

Proposition1: For P(x,y), a polynomial of x and y with
degree n (n>0), if ∀ ∈y R, P(x0,y) = 0 then P(x,y) must

contains a factor (x-x0).

Proposition2: For Q(x,y)= (x - x0) P(x,y), both Q(x,y) and

P(x,y) polynomials in x and y with degree n (n>0), if

∀ ∈y R ,
∂

∂
    Q(x,y)

    x
 

x=x0

=0, then Q(x,y) must contains a

factor of (x - x0) 2.

According to Propositions 1 and 2 and constraints (1)-(3),
r(x,y) can be simplified to:
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Further, we impose constraints 4-6 on r(x,y) and after
careful calculation[9],

a00 1= ;

a ak k, ,0 1 1= +   for k=0,1,2,3 and a40 0= ;

d d kk k, ,0 1 1= +  for  = 0,1 and d 20 0= ;

d10 0= and c= 2 00 22d d+ .

b b00 10= , b b11 21= , b22 0= , b11 0=

c= 2 00 20b b+ ;

a30 0= , b a00 20 2= + , b a a20 42 202= + .

Now, we have only two parameters, a a42 20  and , and the
convolution kernel r(x,y) is:

r x y0 ( , ) =(x-1)(y-1)(1+x+y+ a20 ( x2+ y2 + xy2 + yx2)

 + a42 x2y2

r x y1( , ) =(x-1)(x-2)2(y-1)(( a20 +2)(1+y)+(2 a20 + a42 )y2 )

r x y2( , ) =(4 a20 +4+ a42 )(x-1)(x-2)2(y-1)(y-2)2

r x y3( , ) =(y-1)(y-2)2(x-1)(( a20 +2)(1+x)+(2 a20 + a42 )x2).



With a a20 42
22 2= − + = + +( ) ( )α β α and , the non-

separable convolution kernel is r(x,y)=f(x,y)+ β g(x,y),

where f(x,y) is the separable convolution kernel:
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 and g(x,y) is:
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Here, α  is the slope of r(x,0) at x=1. When α is fixed, the
slope of r(x,x) at x=1 can be related to β .

III. MATHEMATICAL ANALYSIS

To decide the best value for α and β , we consider the

Mean Square Error (MSE) caused by image sampling and
reconstruction,

ε 2 2

2

= −∫∫ f x y f x y dxdyr

R

( , ) ( , ) (1)

where f(x,y) is the image before sampling and f x yr ( , ) is

the reconstructed image.

As in [6], Equation (1) can be expressed as:

ε 2 2 2

2

= ∫∫ $( , ) ( , )f u v e u v dudv
R

(2)

where $ ( , )f u v denotes the Fourier transform of f(x,y) and

e u v r u v r u m v n
nm

2 2
1 2( , ) $( , ) $( , )= − + − −∑∑ (3)

The function e u v2 ( , ) is an image-independent measure of
the sampling-reconstruction blur as function of spatial

frequency. At any frequency ( , )u v , the reconstructed

fidelity depends on 1- e u v2 ( , ) .

One optimization criteria used in the literature is to

minimize the Taylor series of e u v2 ( , ) at spatial frequency
(0,0)[4]. For 2-D piecewise polynomial convolution, the

Taylor’s expansion of e u v2 ( , ) at (0,0) is:

e u v u v2
2

2 2 22

105
2 1( , ) ( ) ( )= + +

π α

+ + + − +
2

33075
337 1240 920 416 16

4
2 3 4π α α α α(

− − + +216 416 320 162 2 2 2β αβ α β β  )u v

              − + + +
π

α α
6

2 6 6

18900
368 769 13376( )( )u v +…(4)

This implies α = −1 2/  and β = 0 .

However, real images contain middle and high frequency
components (eg. edges and sharp features) which are the
most meaningful features in the given image[7]. Thus, the
criteria to minimize the MSE at lowest frequency is not
appropriate for images that contain middle and high
frequency components. As an example, for the scene with a

single edge passing through the original at 45o , MSE is
minimized with α = −0 399.  and β = 0180. . Similarly, for

a scene with a square of area s2 centered at the origin, the
MSE optimal values for α and β  depend on s, as shown

in Figure 2.

Figure 2. Values of α and β that minimize MSE (Equation 2)

for $ ( , )f u v =  sinc2(su,sv).

Most scenes do not contain only a single edge or rectangle.
They usually contain more complex structures. Therefore,
a more appropriate model for images is the two-
dimensional random Markov field, the auto-correlation
function of which is:



R x y x yff ( , ) exp( ).= − +λ 2 2 (5)

The corresponding power spectrum is

E f u v
u v

{ $( , ) }
( ( ))

.
/

2

2 2 2 2 3 2

2

4
=

+ +
πλ

λ π
   

(6)

The parameter λ is the expected frequency of edges along
any line in the random field[8].

Substituting the expression in (6) into Equation (2) gives
an infinite MSE, because the expected sample and
reconstruction error is periodic in the spatial domain with a
period at [0,1]x[0,1]. Therefore, the reconstruction error in
one period is used:

ε 2

0

1

0

1
2= −∫∫ E f x y f x y dxdyr{( ( , ) ( , )) } . (7)

With

  f x y f m n r x m y nr
nm

( , ) ( , ) ( , )= − −∑∑  (8)

Equation (7) is:

ε 2

0

1

0

1
0 0 2= − − − − −∫∫ ∑∑R R x m y n r x m y nff ff

nm

( , ) ( , ) ( , )

+ − −

× − − − −

∑∑∑∑ R m p n q

r x p y q r x m y n dxdy

ff
qpnm

( , )

( , ) ( , ) .             (9)

Solving equations 
∂ε
∂α

   

   

2

0= and 
∂ε
∂β

   

   

2

0= , Table 1 lists

the best α and β with respect to λ .

λ α β

1 0.0207 0.6065

1/2 -0.1622 0.3360

1/4 -0.2271 0.1937

1/8 -0.2512 0.1248

1/16 -0.2611 0.0913

1/32 -0.2654 0.0748

Table 1. Values of α and β that minimize MSE

(Equation 2) for a random field model (Equation 5).

IV. CONCLUSION

This paper discusses the two-dimensional, non-separable,
piecewise polynomial convolution kernel. Results indicate

this kernel is superior to the traditional separable kernel.
Further research focuses on relaxing the constraints in
order to improve the reconstruction kernel and
incorporating restoration.
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