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ABSTRACT

This paper proposes a search method that can quickly de-
tect and locate known sound (video) in a long audio (video)
stream. The method is based on active search [1]. Active
search reduces the number of candidate matches between
reference and input signals by approximately 10 to 100
times compared to exhaustive search, while guaranteeing
the same retrieval accuracy. We proposed a quick search
method in [2], and here we focus on improvement of the ac-
curacy. Thus the feature used has been extended to the au-
dio power spectrum and temporal division of the histogram
windows has been introduced to incorporate time informa-
tion. Tests carried out under practical circumstances clearly
show the accuracy improvement. The proposed method is
still so fast that it can correctly retrieve a 15-s commercial
in a 6-h recording of TV broadcasting within 2 s, once the
features are calculated.

1. INTRODUCTION

This paper discusses a method to search quickly through
a long audio or video stream (termed an input signal) to
detect and locate a known reference audio or video sig-
nal (termed a reference signal). One application in mind
is searching and retrieval of music from unlabeled audio
archives, videos or the Internet. Another is monitoring oc-
currences of a TV commercial or the theme music of a TV
program.

Even if a reference signal is known, a huge amount of
computation is required for the feature matching when a
long input signal is assumed. Adopting heuristic time-
skipping in the matching process may partially reduce the
computational load, but may also result in deterioration of
the recall rate 1 (increase of misses).

We proposed a quick audio retrieval method using the
active search algorithm [2]. However, the method was not
necessarily accurate enough under practical circumstances
(e.g. search for real TV recordings). Therefore we focus
on improving retrieval accuracy maintaining the quickness
that characterizes active search. To this end, the feature

1The recall rate is de�ned as the number of correctly retrieved
objects divided by the number of objects that should be re-
trieved. The precision rate (appearing in Section 3) is de�ned as
the number of correctly retrieved objects divided by the number
of all retrieved objects.

is extended to the audio power spectrum. In addition, the
temporally divided histogram windows are introduced to in-
corporate time information. The framework also integrates
video retrieval using color features.

Section 2 overviews the search algorithm. Section 3
evaluates the speed and accuracy of the algorithm using
recordings of real TV broadcasting. Concluding remarks
are given in Section 4.

2. SEARCH ALGORITHM

2.1. Overview

Figure 1 outlines the proposed algorithm. Firstly, the fea-
ture vectors are calculated from both the reference signal
and input signal. The windows are then applied to both
the reference and input feature vectors. The feature vectors
over the windows create the histogram. The window length
may be the same as the reference signal duration. For the
incorporation of time-sequence information, however, the
windows can be temporally divided into Ndiv subwindows
as shown in the �gure. Thirdly, similarity between the ref-
erence histogram and input histogram is calculated. When
the similarity exceeds a threshold value chosen in advance,
the reference signal is detected and located. In the last step,
the window on the input signal is shifted forward in time
and the search proceeds.

2.2. Feature Extraction

The features are the audio power spectrum and colors.
Audio feature vector f(k) is written as

f (k) = ( f1(k); f2(k); � � � ; fN (k) ) ; (1)

where k is the sampled time. An element of f(k) is the
normalized short-time power spectrum, which is given as

fj(k) = �(k) Yj(k); (2)

Yj(k) =

kX
t=k�M+1

y
2
j (t); (3)

k = lM (l = 1; 2; � � �); (4)
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Figure 1: Block diagram of the proposed search algorithm.

where yj(t) is the output waveform of bandpass �lter j at
time t,M is the time support of the feature vector, N is the
number of frequency channels, and �(k) is a normalization
constant de�ned as

�(k) =
1

max
j

( Yj(k) )
: (5)

Bandpass �lter yj(t) can be implemented as a 2nd order
IIR �lter that is computationally inexpensive. Other audio
features, such as cepstral coe�cients, may be used; how-
ever, the cepstrum is computationally expensive and not as
suitable for quick searching as the feature discussed here.

To calculate the video feature vector, the image in each
video frame is divided into D pieces of subimages. Letting
p designate the video frame number and d the subimage
(d = 1; � � � ; D), the video feature vector u(p; d) is given as

u(p; d) = ( ur(p; d); ug(p; d); ub(p; d) ); (6)

where ur; ug; and ub respectively denote the red, green, and
blue values averaged over the pixels in each subimage. For
example,

ur(p; d) =
1

jI(p; d)j

X
q2I(p;d)

r(q); (7)

where r(q) is the red value of pixel q , I(p; d) is the subim-
age, and j � j stands for the number of pixels. The color
information is employed because it has been successfully
applied in visual object recognition [3, 1].

2.3. Histogram Modeling

A histogram is used as a non-parametric signal model for
both the reference and input signals over the window con-
sidered. Swain et al. have shown that the histogram space
provides su�cient inter-object discrimination in vision [3].

The similarity between the reference and input feature
vector histograms over the windows can be determined in
several ways; for example, histogram intersection. The his-
togram intersection for the i-th subwindow is de�ned as

Si(h
R
i ; h

I
i ) =

1

L

LX
l=1

min( hRil ; h
I
il ); (8)

where hRi and hIi are the histograms for the reference and
the input signal respectively, and L is the number of his-
togram bins. The similarity over the whole windows, S, is
de�ned using Si as

S(hR; hI) = min
i
( Si(h

R
i ; h

I
i ) ): (9)

The histogram intersection measure is used because it
is computationally simple, lends itself to an analytically-
simple upper bound theorem [1, 2], and because it has been
used successfully in visual object detection [3].

However, it is necessary to choose a suitable number of
bins and binwidths for each dimension. As the number of
bins increases, the computation increases. Moreover, the
resolution of the histogram model may become so �ne that
noise-corrupted feature vectors may signi�cantly distort the
histogram. However, if the number of bins is too low, the
histogram can not su�ciently discriminate between di�er-
ent audio or visual objects. In our experimentation, the
number of bins are chosen empirically as described in Sec-
tion 3. When the number of bins for each element is b and
the feature dimension is N , the total number of bins L is
given by

L = b
N
: (10)

The bin boundaries are selected so that the same number
of feature vectors fall in the bins for each dimension. This
is done by sampling feature vectors before the search pro-
cedure starts.

2.4. Similarity Upper Bound and Skip Width

As the window for the input signal shifts forward in time,
similarity based on the reference and input feature vector
histograms shows considerable correlation from one time
step to the next. The time-series active search algorithm
takes advantage of this by computing an upper bound of
the similarity measure as a function of the time step and
skipping all intermediate time-step similarity evaluations
until this upper bound exceeds the detection threshold [2].

The upper bound on S(hRi ; h
I
i ) is

Sub(h
R
i ; h

I
i (n2)) = S(hRi ; h

I
i (n1)) +

n2 � n1

Pi
; (11)

where hIi (n1) and hIi (n2) are the histograms created by the
input window for frame numbers n1 and n2, and Pi is the
number of frames (= the number of feature vectors) in each
histogram [2]. Using Eq.(11), the derivation of the skip
width for i-th subwindow is straightforward:



wi=

�
oor (Pi(� � Si)) + 1 if Si < �;

1 otherwise;
(12)

where wi is the skip width, and oor(x) means the greatest
integral value less than x. Thus, the skip width w for the
whole window is given as

w = max
i
( wi ) : (13)

2.5. Detection Criterion

It is necessary to decide the detection threshold above which
a histogram intersection indicates a correct match. Prelim-
inary investigations show that the histogram intersection
plot for di�erent reference templates has di�erent descrip-
tive statistics e.g. mean, standard deviation, and correct
match values. Thus, a detection threshold that can adapt
to di�erent reference templates is required. We chose the
search threshold, �, such that

� = m+ c �; (14)

where m and � are the mean and standard deviation of the
similarity values obtained from the feature vector sampling,
and c is an empirically determined constant.

3. EXPERIMENTS

The proposed method was implemented on a workstation
(SGI O2) and tested with regard to search speed and accu-
racy using recordings of real TV broadcasts.

3.1. Experiment 1: Search Speed

The task was to search for and �nd a commercial (15 s) in
a video recording of TV broadcasting (6 h).

In the audio feature extraction, the audio track (VHS
Hi-Fi format) of the recording was �rst digitized at 11.0kHz
sampling frequency and 8bit quantization accuracy, and
then analyzed by a seven-channel (N=7) 2nd-order IIR
bandpass �lter bank (the �lter Q=15). The �lter center
frequencies were equally spaced in a log frequency scale.
The feature vectors [Eq.(2)] were calculated every 128 in-
put samples (M=128).

In the video feature extraction, the video signal (NTSC)
was captured at 30 frames/s. Each frame image was divided
into six subimages (D=6) and feature vectors were calcu-
lated [Eq.(6)].

The time required for the search comprises (1) the fea-
ture extraction time and (2) the search time based on the
extracted feature vectors.

(1) The feature extraction in this experiment was per-
formed for 6 h and 15 s worth of signals in total. The CPU
time needed was approximately 175 s for the audio feature
and 50 s for the video feature.

(2) The search time depends on the reference signal,
input signal, number of histogram bins, number of tempo-
ral divisions of windows, and detection threshold. Typical
search times are shown in Table 1; here, the number of his-
togram bins for each feature dimension, b in Eq.(10), was 3
for the audio feature and 8 for the video feature.

The bottom two rows in the table are the results based
on the ZCR (zero-crossing rate) feature employed in [2] (In

Table 1: Search time

Feature Ndiv CPU time* Speed-up Result

Audio (spectrum) 1 0.68 (24.9) s 37 times Fig.2
Audio (spectrum) 4 1.02 (24.7) s 24 times Fig.3
Video 1 1.09 (22.1) s 20 times Fig.4
Video 4 1.18 (21.4) s 18 times Fig.5

Audio (ZCR) [2] 1 0.62 (11.1) s 18 times Fig.6
Audio (ZCR) 4 0.73 (10.9) s 15 times -

* In (), the CPU time in case of exhaustive search
(=the case where w is �xed to 1) is given.

[2], waveform sampling frequency and quantization accu-
racy were respectively 44.1 kHz and 16bits, but here they
are 11.0 kHz and 8 bits). In all cases in Table 1, the search
results were correct (i.e. no misses and no surplus detec-
tions).

The CPU time required for search through the 6-h au-
dio and video stream is signi�cantly shorter than that for
conventional spectral matching; in our test, it took approxi-
mately 20 min (CPU time) for conventional spectral match-
ing using the inner products of the feature vectors, although
the same feature vectors as in Experiment 1 were used.

Figs.2 to 6 show the corresponding similarity patterns;
in these �gures the horizontal axis is time and the verti-
cal axis is the similarity. The circles indicate the detected
places whereas the horizontal dotted lines stand for the de-
tection threshold levels. It is clear that the introduction of
time sequence information by dividing the windows enlarges
the similarity margin for thresholding. It is also shown that
the margin in Fig.2 is greater than that in Fig.6.

3.2. Experiment 2: Search Accuracy

The accuracy was evaluated using another TV recording.
Firstly, a 20-min recording of TV broadcasting was cap-
tured twice; once as a source of reference signals and then
as an input signal. The search was repeated 100 times; in
each trial, a 15-s reference signal was randomly chosen from
the �rst recording, and the latter signal was scanned. All
parameter values were the same as in Experiment 1.

The results are shown in Table 2 and Fig.7. Here, the
accuracy value was the average of the precision rate and the
recall rate maximized by changing the c value in Eq.(14).
However, the c value was �xed during the 100 repetitions.
Table 2 shows that the spectrum features provide better dis-
crimination property in comparison with the ZCR feature.
This is also clearly shown in Fig.7.

4. CONCLUSIONS

This paper has proposed a search method that can quickly
detect and locate a known reference audio (video) in a long
audio (video) stream. The framework [2] has been extended
to include the audio power spectrum and colors. In addi-
tion, the time information has been introduced by dividing
the temporal windows. The experiments showed that these
have improved the retrieval accuracy. The experiments also



Figure 2: Search result (Audio, spectrum, Ndiv=1)

Figure 3: Search result (Audio, spectrum, Ndiv=4)

Figure 4: Search result (Video, Ndiv=1)

Figure 5: Search result (Video, Ndiv=4)

Figure 6: Search result (Audio, ZCR [2], Ndiv=1)

Table 2: Search accuracy

Feature Ndiv Accuracy*

Audio (spectrum) 1 99.0 [%]
Audio (spectrum) 4 100.0 [%]
Video 1 96.5 [%]
Video 4 96.5 [%]

Audio (ZCR) [2] 1 89.5 [%]
Audio (ZCR) 4 92.6 [%]

* Accuracy = (Precision+Recall)/2
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Figure 7: Search accuracy (Audio, Ndiv=4)

showed that the quickness that characterizes active search
is still maintained; the proposed method can correctly de-
tect and locate a 15-s commercial in a 6-h recording of TV
broadcasting within 2 s, once feature vectors are calculated.
The feature vector calculation is also fast; for a 6-h signal,
it took approximately 175 s for the audio feature and 50 s
for the video feature (CPU time; SGI O2). Future work will
include an application to the content-based retrieval [6, 7]
and multimodal search using audio and visual features si-
multaneously.
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