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ABSTRACT

Paraunitary filter banks are important for several
signal processing tasks. In this paper, we consider
the task of adapting the coefficients of a multichan-
nel FIR paraunitary filter bank via gradient ascent
or descent on a chosen cost function. The pro-
posed generalized algorithms inherently adapt the
system’s parameters in the space of paraunitary fil-
ters. Modifications and simplifications of the tech-
niques for spatio-temporal principal and minor sub-
space analysis are described. Simulations verify one
algorithm’s useful behavior in this task.

1. INTRODUCTION

Consider the following problem: given a cost function
J({Wy,}=,) for the sequence of (m X n) matrices W), =

[Wip - Wmp]T with Wi, = [witp -+ Winp]® and m < n,
maximize TJ{W,}%) (1)
such that > w,wWi, =14, (2)
p=—00

where I is the identity matrix and d; is the Kronnecker im-
pulse function. Defining the z-transform of W, as W (z) =
* W,z P (2)is

p=—00

W)W (2™ = L (3)

z=elw

Multichannel linear systems that satisfy (2) or (3) are called
paraunitary systems. They are useful for designing perfect-
reconstruction filter banks for multirate systems used in
coding, multichannel deconvolution and equalization, and
image processing [1]-[5]. When m = n = 1, (3) guarantees
that W (z) is an all-pass filter, and thus solutions to (1)—(3)
are useful for single-channel equalization and control tasks
i6]-[10].

To our knowledge, adaptive methods for solving (1)-(3)
have not been extensively explored. Works in perfect re-
construction filter bank design have focused on constructive
methods using classic mean-square or least-squares approx-
imation theory [2]-[5]. Direct-form adaptive all-pass filters
have been developed [7, 8] but are challenging to extend
to higher-order systems. In addition, adaptive solutions to
(1)-(3) would enable efficient coding and storage of mul-
tisensor signals, such as multiple-microphone recordings of
several talkers in a room.
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In this paper, we provide gradient-based adaptive algo-
rithms for solving (1)—(3) iteratively over time. Our al-
gorithms in differential form preserve (2) or (3), and thus
they adjust W, in the impulse response space of parau-
nitary filters. We then explore spatio-temporal extensions
of principal and minor subspace analysis algorithms [11]-
[14], developing the necessary modifications and simplifica-
tions to enable their simple and stable implementation in
truncated FIR filter form. Simulations verifying the useful
behavior of one algorithm are provided.

2. GRADIENT ADAPTIVE PARAUNITARY
FILTERS

To develop gradient-based methods for solving (1)—(3), we
consider the situation where W, = W, defines a memo-
ryless system, in which case (1)—(3) reduces to

maximize J(W)  such that WW' =1 (4)

Adaptive solutions to (4) are useful in many problems. For
example, when J(W) = :i:tr[WRxxWT] where Rxx is a
symmetric positive-definite matrix, (4) becomes principal
component analysis (PCA) or minor component analysis
(MCA) [11]-{14]. Since solutions to (4) exist, we shall lever-
age this knowledge by extending one of these solutions to
the multichannel dispersive case.

One simple gradient-based method for solving (4) em-
ploys unconstrained adaptation via the update

WE+1) = W) +Gk) (5)
ak) = u 2L W), ©)

where p(k) is the step size, combined with the periodic
projection of W(k) back to the constraint space using
a Gram-Schmidt, singular-value-decomposition (SVD), or
equivalent procedure. Such a solution is likely to be
computationally-difficult to extend to the more-general dis-
persive case, however, due to complications in the projec-
tion process.

Note that (4) restricts W to the space of (m x n) or-
thonormal matrices. If in addition J(W) = J(QW) for
any (m x m) Hermitian matrix Q, any W satisfying (4) lies
within the Grassman manifold [15]. If 7(W) # J(QW),
then the solution to (4) lies within the Stiefel manifold [16].
Algorithms for adjusting W (k) directly within the Grass-
man and Stiefel manifolds have received attention recently
[17]-[22]. The simplest gradient-based algorithms attempt
to move W (k) via differential changes along a geodesic in
the associated parameter space to maximize J (W), as cal-
culating exact geodesic motions is known to involve m two-
dimensional rotations in the Grassman manifold [21]. For



the Grassman and Stiefel manifolds, these gradient algo-
rithms in differential form are

dW

— = ww’'G -GW'wW (7)
and % =WW'G - WG'W, (8)
respectively. It can be proven for (7) and (8) that
dWW"
@ - ° ©)

for all t > to if W(to)W7T (tp) = I at some time instant
t = to, such that WW?7 =1 is maintained [22]. Moreover,
since no other processing is required, (7) and (8) are ideal
for extension to adaptive paraunitary systems.

To develop procedures similar to (7) and (8) to solve (1)—
(3), we rely on recent works relating instantaneous blind
source separation and blind deconvolution [23]-[25]. These
works have indicated that spatial-only adaptive algorithms
can be extended to adaptive single- and multichannel linear
systems if the following three rules are followed:

1. Multiplication of two matrices in the spatial-only case
is equivalent to convolution of their associated se-
quences in the multichannel dispersive case.

2. Addition of two matrices in the spatial-only case is
equivalent to element-by-element addition of their as-
sociated sequences in the multichannel dispersive case.

3. Transposition of a matrix in the spatial-only case
is equivalent to element-by-element transposition and
time-reversal of its associated sequence in the multi-
channel dispersive case.

Using these rules, we now extend (7) and (8) to solve (1)—
(3). These algorithms are given in continuous-time form for
analysis; discrete-time versions are developed later.
Extension of (7)

AW,
dt

e Wp*WTp*Gp—Gp*WTp*Wp
= ZWP*TWZ—qu - GP*TWZ—er(lO)

a
Extension of (8)

AW,

7t e Wp*W:fp*Gp—Wp*G:fp*Wp

Z WP*TWZ—TGQ - WP*TGZ—TWQ' (11)
q,

It can be proven for both (10) and (11) that (2) is satisfied
for all t > to if Wp(to) is paraunitary. For brevity, we only
show this property for (10); the proof for (11) is similar.
Taking derivatives of both sides of (2) gives

L, WoWo (—dW,
dt - dt

p

Substituting the relation in (10) into the RHS of (12) gives

>, WeWo,

dWT
W, +W, df“ (12)

dt
> W Wi G W =Gy WL W W
p,q,T

+W,GIW,_, WL,  —W,W/W,_,G,, (13)

Lets = p —r and t = q — r, respectively, so that (13) is

T
Z,WeWon lewprwg_r

T

G W,

p,q

-y ewy lz WHTWLTH]
st r

S w,al [z wwwz_ﬁ,]
p,q T

- Z [Z Ws+7‘Wz—‘+7‘
s,t r

Assume that (2) holds at some time instant to. Then, the
four summations within brackets on the RHS of (14) are
Op—ql, ds—¢+11, 0p—q411, and ds—¢I, respectively. Substitut-
ing these relations and simplifying gives

W,.GL,(14)

>, Wo W
T = LG Wi — ) G
P s
+ ZWPGZ-H - Z W.G(15)
P s
= o (16)

Thus, the impulse response sequence W, never deviates
from paraunitariness, as desired.

3. IMPLEMENTATION ISSUES

In practice, discrete-time versions of (10) and (11) are re-
quired for real-time digital implementations. Substituting
finite differences for differentials in these algorithms, how-
ever, can create numerical problems due to error accumu-
lation. For example, when W, = W{,, the algorithm

W(k+1) = W(k)+W(E)W (k)G(k)
— G(h)W (k)W (k) (17)
G(k) = pk)W(k)Rxx (18)

is numerically-unstable for PCA and MCA [13, 14]. For
this reason, modifications of the updates are required. For
PCA, an approximation to (17)-(18) given by

W(k+1) = W(k)+G(k) — GE)WT (k)W (k)(19)

with p(k) > 0 yields the principal subspace estimate in a
numerically-stable manner [11]. For MCA, the update

Wk+1) = Wk +WEW (KWE)W” (k)G (k)
— G(k)WT (k)W (k) (20)

with p(k) < 0 yields asymptotically-stable behavior [14].

In addition to the above issues, one also must address
three others in practice: (i) the infinite memory, (ii) the
non-causality, and (iii) the computational complexity, re-
spectively, of the adaptive system. The first two issues
typically can be addressed by truncating the filter model
to finite length and by employing delayed updates within
the algorithm, respectively. The system’s overall computa-
tional complexity usually can then be reduced by assuming
that the system adapts slowly, so that delayed versions of
previously-computed signals are used in place of similar sig-
nals appearing within the parameter updates.



3.1. Spatio-Temporal Principal Subspace Analysis
To better understand the procedure for developing sim-
plified, numerically-stable discrete-time implementations of
(10) and (11), we consider the problem of spatio-temporal
principal subspace analysis. Let the m-dimensional vector
v (k) be the output at time k of the (m x m)-dimensional
multichannel linear system given by

> Wik)x(k - 1), (21)

l=—00

y(k) =

where x(k) is an n-dimensional vector sequence and W, (k),
—o00 < p < o0 is the adaptive impulse response of the mul-
tichannel system. We wish to maximize the cost function

TUAWIE) = E{lly®)II%} (22)

with respect to {Wp(k)} subject to (2). A stochastic gra-
dient algorithm that employs the cost function

TUAWLIE = ly®)1 (23)

can be used to adjust W,(k), as a slowly-adapting system
averages across successive time samples in its operation.
A straightforward application of (10) to this task yields

W, (k+1) = W,(k)

—uk)y (k) L x"(k—p+ r)W,?_T(k)]wq(kxzzx)

g=—oolr=

This system can be expected to be numerically-unstable,
however, as (17) is numerically-unstable. To obtain a
potentially-useful algorithm, we instead begin with a ver-
sion that is analogous in form to (19) as given by

Wy(k+1) = W, (k) + p(k)y(k)x" (k- p)

—uk)y (k) L x"(k—p+ r)WQT_T(k)]wq(kxzm

g=—oolr=

Such a system cannot be implemented, however, due to
the doubly-infinite impulse response model. For practical
systems, we truncate the paraunitary filter model by setting
W, (k) =0 for p < 0 and p > L, respectively, which yields

y(k) = Y Wi(k)x(k—1) (26)
=0

in place of (21) and

Wy(k+1) = Wy(k) + p(k)y(k)x" (k- p)

—u(k)Y(k)ZLZXT(k —p+ )W, (k)| W, (k)(27)

q=0lr=¢-L

in place of (25) for 0 <p < L.
Eqgn. (27) is both computationally-complex and non-
causal. In [26]-[29], a procedure is described and used to

simplify related algorithms for multichannel blind decon-
volution. We follow a similar procedure in what follows.
Letting | = ¢ — r, we can make the approximation

> Woor(k)x(k—p+r)

r=q—L
L

~Y Wik —p+a)x(k—p+g—1)=y(k—p+aq(28)
=0

and thus

YWk D Wor(k)x(k—p+r)

r=qg—L

Q

> Wi (ky(k-p+L-q) (29)

Q

> Wi (k—p+L)y(k—p+L—gq). (30)

q=0

Finally, substituting the above results into the RHS of (27)
and delaying these terms by L time samples, we obtain a
causal delayed-update version of (27) as

Wy(k+1) = Wy(k)
+u(k)y(k — L) [x" (k= L —p) —u” (k- p)],(31)

where L
utk) = Y Wi_,(k)y(k—q). (32)

Eqns. (26), (31), and (32) describe the proposed spatio-
temporal extension of the principal subspace rule in (17).
This algorithm requires (3mn + n)(L + 1) + m multi-
ply/accumulates (MACs) per iteration to implement, and
its average complexity per adaptive parameter is about the
same as that in the scalar case (L = 0).

3.2. Spatio-Temporal Minor Subspace Analysis
Using similar principles, we can extend the MSA algorithm
in (20) to the spatio-temporal case. For brevity, the deriva-
tions are omitted, and only the final form of the algorithm
is given: for 0 <p < L,

Wyk+1) = Wy(k) +pu(k) [((k)x" (k—2L —p)
—y(k—2L)u” (k — L —p)], (33)
where y(k) and u(k) are computed as in (26) and (32),
Ck)y = Y Wik)a(k —1) (34)
=0
2(k) = Y Wi_,(k)v(k—q) (35)
vik) = Y Wiku(k—10). (36)
=0

Note that this algorithm requires (Tnm+2m)(L+1) MACs
to implement, such that its average complexity per adaptive
parameter is about the same as that of (20).
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Fig. 1: Evolution of p(k) and n(k) for the proposed spatio-
temporal PSA scheme in the simulation example.

4. SIMULATIONS

We now explore the performance of [(26),(31),(32)] via
simulations. Consider a two-input, four-output system in
which s(k) = [s1(k) s2(k)]", si(k), i € {1, 2} are indepen-
dent zero-mean Gaussian sequences with autocorrelations
rss,i(D) = (—=1)70.5)!", and

10

x(k) = > Ax(k—i)+Y Bjs(k—j), (37)

- 038 039 —0.22

0.087
0.24 —030 —0.03 —008
A1=|_036 —020 —044  0.02 (38)

|—049 016 049 —0.17]
F—0.01 001  0.06  0.067
005 003 004 —0.09
A2= 002 —006 —001 002 (39)
L 005 —002 001 —0.09]
r [=0.02 —0.04 0.07 —0.10
B, = [ 0.05  0.09 0.10 0.06] (40)
r [=01 0.0 —0.6 03
B, = [—0.4 0.9 05 —0.2] : (41)

We apply [(26),(31),(32)] to x(k), where m = 2, n = 4,
L = 6, u(k) = 0.01, and each w;;,(0) is initialized to a
small random value. Shown in Fig. 1 are the evolutions of

p(k) = [1x(k — L) — u(k)||” (42)

and n(k) = Z

10— W, (k)W (k)|| (43)
I=—L p=0 Ia

as averaged over twenty different simulation runs. As can
be seen, the proposed algorithm effectively adapts to the
signal subspace while ensuring the system’s paraunitariness
without any special coefficient initializations.

5. CONCLUSIONS

In this paper, we have proposed gradient adaptive meth-
ods for paraunitary filter banks. When applied to spatio-
temporal subspace analysis, the proposed algorithms are
computationally-simple and effective. The techniques are
expected to be useful for signal-adaptive filter bank design,
coding, and equalization tasks.
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