
ADAPTIVE PARAUNITARY FILTER BANKS FOR PRINCIPAL AND MINOR

SUBSPACE ANALYSIS

S.C. Douglas1, S. Amari2, and S.-Y. Kung3

1Department of Electrical Engineering, Southern Methodist University, Dallas, TX 75275 USA

2Brain-Style Information Systems Group, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198 JAPAN

3Department of Electrical Engineering, Princeton University, Princeton, NJ 08544 USA

ABSTRACT

Paraunitary �lter banks are important for several
signal processing tasks. In this paper, we consider
the task of adapting the coe�cients of a multichan-
nel FIR paraunitary �lter bank via gradient ascent
or descent on a chosen cost function. The pro-
posed generalized algorithms inherently adapt the
system's parameters in the space of paraunitary �l-
ters. Modi�cations and simpli�cations of the tech-
niques for spatio-temporal principal and minor sub-
space analysis are described. Simulations verify one
algorithm's useful behavior in this task.

1. INTRODUCTION

Consider the following problem: given a cost function
J (fWpg

1
�1) for the sequence of (m � n) matrices Wp =

[w1p � � � wmp]
T with wip = [wi1p � � � winp]

T and m � n,

maximize J (fWpg
1
�1) (1)

such that

1X
p=�1

WpW
T
p+l = I�l; (2)

where I is the identity matrix and �l is the Kronnecker im-
pulse function. De�ning the z-transform of Wp as W(z) =P1

p=�1
Wpz

�p, (2) is

W(z)WT (z�1)
��
z=ej!

= I: (3)

Multichannel linear systems that satisfy (2) or (3) are called
paraunitary systems. They are useful for designing perfect-
reconstruction �lter banks for multirate systems used in
coding, multichannel deconvolution and equalization, and
image processing [1]{[5]. When m = n = 1, (3) guarantees
that W (z) is an all-pass �lter, and thus solutions to (1){(3)
are useful for single-channel equalization and control tasks
[6]{[10].
To our knowledge, adaptive methods for solving (1){(3)

have not been extensively explored. Works in perfect re-
construction �lter bank design have focused on constructive
methods using classic mean-square or least-squares approx-
imation theory [2]{[5]. Direct-form adaptive all-pass �lters
have been developed [7, 8] but are challenging to extend
to higher-order systems. In addition, adaptive solutions to
(1){(3) would enable e�cient coding and storage of mul-
tisensor signals, such as multiple-microphone recordings of
several talkers in a room.
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In this paper, we provide gradient-based adaptive algo-
rithms for solving (1){(3) iteratively over time. Our al-
gorithms in di�erential form preserve (2) or (3), and thus
they adjust Wp in the impulse response space of parau-
nitary �lters. We then explore spatio-temporal extensions
of principal and minor subspace analysis algorithms [11]{
[14], developing the necessary modi�cations and simpli�ca-
tions to enable their simple and stable implementation in
truncated FIR �lter form. Simulations verifying the useful
behavior of one algorithm are provided.

2. GRADIENT ADAPTIVE PARAUNITARY
FILTERS

To develop gradient-based methods for solving (1){(3), we
consider the situation where Wp = W�p de�nes a memo-
ryless system, in which case (1){(3) reduces to

maximize J (W) such that WWT = I: (4)

Adaptive solutions to (4) are useful in many problems. For
example, when J (W) = �tr[WRxxW

T ] where Rxx is a
symmetric positive-de�nite matrix, (4) becomes principal
component analysis (PCA) or minor component analysis
(MCA) [11]{[14]. Since solutions to (4) exist, we shall lever-
age this knowledge by extending one of these solutions to
the multichannel dispersive case.
One simple gradient-based method for solving (4) em-

ploys unconstrained adaptation via the update

W(k + 1) = W(k) +G(k) (5)

G(k) = �(k)
@J (W(k))

@W
; (6)

where �(k) is the step size, combined with the periodic
projection of W(k) back to the constraint space using
a Gram-Schmidt, singular-value-decomposition (SVD), or
equivalent procedure. Such a solution is likely to be
computationally-di�cult to extend to the more-general dis-
persive case, however, due to complications in the projec-
tion process.
Note that (4) restricts W to the space of (m � n) or-

thonormal matrices. If in addition J (W) = J (QW) for
any (m�m) Hermitian matrix Q, anyW satisfying (4) lies
within the Grassman manifold [15]. If J (W) 6= J (QW),
then the solution to (4) lies within the Stiefel manifold [16].
Algorithms for adjusting W(k) directly within the Grass-
man and Stiefel manifolds have received attention recently
[17]{[22]. The simplest gradient-based algorithms attempt
to move W(k) via di�erential changes along a geodesic in
the associated parameter space to maximize J (W), as cal-
culating exact geodesic motions is known to involve m two-
dimensional rotations in the Grassman manifold [21]. For



the Grassman and Stiefel manifolds, these gradient algo-
rithms in di�erential form are

dW

dt
=WWTG�GWTW (7)

and
dW

dt
=WWTG�WGTW; (8)

respectively. It can be proven for (7) and (8) that

dWWT

dt
= 0 (9)

for all t � t0 if W(t0)W
T (t0) = I at some time instant

t = t0, such that WWT = I is maintained [22]. Moreover,
since no other processing is required, (7) and (8) are ideal
for extension to adaptive paraunitary systems.
To develop procedures similar to (7) and (8) to solve (1){

(3), we rely on recent works relating instantaneous blind
source separation and blind deconvolution [23]{[25]. These
works have indicated that spatial-only adaptive algorithms
can be extended to adaptive single- and multichannel linear
systems if the following three rules are followed:
1. Multiplication of two matrices in the spatial-only case

is equivalent to convolution of their associated se-
quences in the multichannel dispersive case.

2. Addition of two matrices in the spatial-only case is
equivalent to element-by-element addition of their as-
sociated sequences in the multichannel dispersive case.

3. Transposition of a matrix in the spatial-only case
is equivalent to element-by-element transposition and
time-reversal of its associated sequence in the multi-
channel dispersive case.

Using these rules, we now extend (7) and (8) to solve (1){
(3). These algorithms are given in continuous-time form for
analysis; discrete-time versions are developed later.
Extension of (7) :

dWp

dt
= Wp �W

T
�p �Gp �Gp �W

T
�p �Wp

=
X
q;r

Wp�rW
T
q�rGq �Gp�rW

T
q�rWq :(10)

Extension of (8) :

dWp

dt
= Wp �W

T
�p �Gp �Wp �G

T
�p �Wp

=
X
q;r

Wp�rW
T
q�rGq �Wp�rG

T
q�rWq :(11)

It can be proven for both (10) and (11) that (2) is satis�ed
for all t � t0 if Wp(t0) is paraunitary. For brevity, we only
show this property for (10); the proof for (11) is similar.
Taking derivatives of both sides of (2) givesP

p
WpW

T
p+l

dt
=

X
p

dWp

dt
WT

p+l +Wp

dWT
p+l

dt
(12)

Substituting the relation in (10) into the RHS of (12) givesP
p
WpW

T
p+l

dt
=X

p;q;r

Wp�rW
T
q�rGqW

T
p+l�Gp�rW

T
q�rWqW

T
p+l

+WpG
T
q Wq�rW

T
p+l�r�WpW

T
q Wq�rG

T
p+l�r(13)

Lets = p� r and t = q � r, respectively, so that (13) isP
p
WpW

T
p+l

dt
=

X
p;q

"X
r

Wp�rW
T
q�r

#
GqW

T
p+l

�
X
s;t

GsW
T
t

"X
r

Wt+rW
T
s+r+l

#

+
X
p;q

WpG
T
q

"X
r

Wq�rW
T
p�r+l

#

�
X
s;t

"X
r

Ws+rW
T
t+r

#
WtG

T
s+l(14)

Assume that (2) holds at some time instant t0. Then, the
four summations within brackets on the RHS of (14) are
�p�qI, �s�t+lI, �p�q+lI, and �s�tI, respectively. Substitut-
ing these relations and simplifying givesP

p
WpW

T
p+l

dt
=

X
p

GpW
T
p+l �

X
s

GsW
T
s+l

+
X
p

WpG
T
p+l �

X
s

WsG
T
s+l(15)

= 0: (16)

Thus, the impulse response sequence Wp never deviates
from paraunitariness, as desired.

3. IMPLEMENTATION ISSUES

In practice, discrete-time versions of (10) and (11) are re-
quired for real-time digital implementations. Substituting
�nite di�erences for di�erentials in these algorithms, how-
ever, can create numerical problems due to error accumu-
lation. For example, when Wp =W�p, the algorithm

W(k + 1) = W(k) +W(k)WT (k)G(k)

�G(k)WT (k)W(k) (17)

G(k) = �(k)W(k)Rxx (18)

is numerically-unstable for PCA and MCA [13, 14]. For
this reason, modi�cations of the updates are required. For
PCA, an approximation to (17){(18) given by

W(k + 1) = W(k) +G(k)�G(k)WT (k)W(k)(19)

with �(k) > 0 yields the principal subspace estimate in a
numerically-stable manner [11]. For MCA, the update

W(k + 1) = W(k) +W(k)WT (k)W(k)WT (k)G(k)

�G(k)WT (k)W(k) (20)

with �(k) < 0 yields asymptotically-stable behavior [14].
In addition to the above issues, one also must address

three others in practice: (i) the in�nite memory, (ii) the
non-causality, and (iii) the computational complexity, re-
spectively, of the adaptive system. The �rst two issues
typically can be addressed by truncating the �lter model
to �nite length and by employing delayed updates within
the algorithm, respectively. The system's overall computa-
tional complexity usually can then be reduced by assuming
that the system adapts slowly, so that delayed versions of
previously-computed signals are used in place of similar sig-
nals appearing within the parameter updates.



3.1. Spatio-Temporal Principal Subspace Analysis

To better understand the procedure for developing sim-
pli�ed, numerically-stable discrete-time implementations of
(10) and (11), we consider the problem of spatio-temporal
principal subspace analysis. Let the m-dimensional vector
y(k) be the output at time k of the (m � n)-dimensional
multichannel linear system given by

y(k) =

1X
l=�1

Wl(k)x(k� l); (21)

where x(k) is an n-dimensional vector sequence andWp(k),
�1 < p <1 is the adaptive impulse response of the mul-
tichannel system. We wish to maximize the cost function

J (fWpg
1
�1g) = Efjjy(k)jj2g (22)

with respect to fWp(k)g subject to (2). A stochastic gra-
dient algorithm that employs the cost function

bJ (fWpg
1
�1g) = jjy(k)jj2 (23)

can be used to adjust Wp(k), as a slowly-adapting system
averages across successive time samples in its operation.
A straightforward application of (10) to this task yields

Wp(k + 1) = Wp(k)

+ �(k)

1X
r=�1

Wp�r(k)

1X
q=�1

WT
q�ry(k)x

T (k � q)

� �(k)y(k)

1X
q=�1

"
1X

r=�1

xT (k � p+ r)WT
q�r(k)

#
Wq(k)(24)

This system can be expected to be numerically-unstable,
however, as (17) is numerically-unstable. To obtain a
potentially-useful algorithm, we instead begin with a ver-
sion that is analogous in form to (19) as given by

Wp(k + 1) = Wp(k) + �(k)y(k)xT (k � p)

� �(k)y(k)

1X
q=�1

"
1X

r=�1

xT (k � p+ r)WT
q�r(k)

#
Wq(k)(25)

Such a system cannot be implemented, however, due to
the doubly-in�nite impulse response model. For practical
systems, we truncate the paraunitary �lter model by setting
Wp(k) = 0 for p < 0 and p > L, respectively, which yields

y(k) =

LX
l=0

Wl(k)x(k� l) (26)

in place of (21) and

Wp(k + 1) = Wp(k) + �(k)y(k)xT (k � p)

� �(k)y(k)

LX
q=0

"
qX

r=q�L

xT (k � p+ r)WT
q�r(k)

#
Wq(k)(27)

in place of (25) for 0 � p � L.
Eqn. (27) is both computationally-complex and non-

causal. In [26]{[29], a procedure is described and used to

simplify related algorithms for multichannel blind decon-
volution. We follow a similar procedure in what follows.
Letting l = q � r, we can make the approximation

qX
r=q�L

Wq�r(k)x(k � p+ r)

�

LX
l=0

Wl(k � p+ q)x(k � p+ q � l) = y(k � p+ q)(28)

and thus

LX
q=0

WT
q (k)

qX
r=q�L

Wq�r(k)x(k � p+ r)

�

LX
q=0

WT
L�q(k)y(k � p+ L� q) (29)

�

LX
q=0

WT
L�q(k � p+ L)y(k � p+ L� q): (30)

Finally, substituting the above results into the RHS of (27)
and delaying these terms by L time samples, we obtain a
causal delayed-update version of (27) as

Wp(k + 1) = Wp(k)

+ �(k)y(k � L)
�
xT (k � L� p)� uT (k � p)

�
;(31)

where

u(k) =

LX
q=0

WT
L�q(k)y(k � q): (32)

Eqns. (26), (31), and (32) describe the proposed spatio-
temporal extension of the principal subspace rule in (17).
This algorithm requires (3mn + n)(L + 1) + m multi-
ply/accumulates (MACs) per iteration to implement, and
its average complexity per adaptive parameter is about the
same as that in the scalar case (L = 0).

3.2. Spatio-Temporal Minor Subspace Analysis

Using similar principles, we can extend the MSA algorithm
in (20) to the spatio-temporal case. For brevity, the deriva-
tions are omitted, and only the �nal form of the algorithm
is given: for 0 � p � L,

Wp(k + 1) = Wp(k) + �(k)
�
�(k)xT (k � 2L� p)

�y(k � 2L)uT (k � L� p)
�
; (33)

where y(k) and u(k) are computed as in (26) and (32),

�(k) =

LX
l=0

Wl(k)z(k � l) (34)

z(k) =

LX
q=0

WT
L�q(k)v(k � q) (35)

v(k) =

LX
l=0

Wl(k)u(k � l): (36)

Note that this algorithm requires (7nm+2m)(L+1) MACs
to implement, such that its average complexity per adaptive
parameter is about the same as that of (20).
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Fig. 1: Evolution of �(k) and �(k) for the proposed spatio-
temporal PSA scheme in the simulation example.

4. SIMULATIONS

We now explore the performance of [(26),(31),(32)] via
simulations. Consider a two-input, four-output system in
which s(k) = [s1(k) s2(k)]

T , si(k), i 2 f1; 2g are indepen-
dent zero-mean Gaussian sequences with autocorrelations
rss;i(l) = ((�1)i0:5)jlj, and

x(k) =

2X
i=1

Aix(k � i) +

1X
j=0

Bjs(k � j); (37)

A1 =

24 0:38 0:39 �0:22 0:08
0:24 �0:30 �0:03 �0:08

�0:36 �0:20 �0:44 0:02
�0:49 0:16 0:49 �0:17

35 (38)

A2 =

24�0:01 0:01 0:06 0:06
�0:05 0:03 0:04 �0:09
0:02 �0:06 �0:01 0:02
0:05 �0:02 0:01 �0:09

35 (39)

BT
0 =

h
�0:02 �0:04 0:07 �0:10
0:05 0:09 0:10 0:06

i
(40)

BT
1 =

h
�0:1 0:0 �0:6 0:3
�0:4 0:9 0:5 �0:2

i
: (41)

We apply [(26),(31),(32)] to x(k), where m = 2, n = 4,
L = 6, �(k) = 0:01, and each wijp(0) is initialized to a
small random value. Shown in Fig. 1 are the evolutions of

�(k) = jjx(k � L)� u(k)jj2 (42)

and �(k) =

LX
l=�L

�����
�����I�l �

LX
p=0

Wp(k)W
T
p+l(k)

�����
�����
2

F

(43)

as averaged over twenty di�erent simulation runs. As can
be seen, the proposed algorithm e�ectively adapts to the
signal subspace while ensuring the system's paraunitariness
without any special coe�cient initializations.

5. CONCLUSIONS

In this paper, we have proposed gradient adaptive meth-
ods for paraunitary �lter banks. When applied to spatio-
temporal subspace analysis, the proposed algorithms are
computationally-simple and e�ective. The techniques are
expected to be useful for signal-adaptive �lter bank design,
coding, and equalization tasks.
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