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ABSTRACT

In this paper we describe a system for name dialing in the
car and present results under three driving conditions us-
ing real-life data. The names are enrolled in the parked
car condition (engine off) and we describe two approaches
for endpointing them—energy-based and recognition-based
schemes—which result in word-based and phone-based mod-
els, respectively. We outline a simple algorithm to reject
out-of-vocabulary names. PMC is used for noise compensa-
tion. When tested on an internally collected twenty-speaker
database, for a list size of50 and a hand-held microphone,
the performance averaged over all driving conditions and
speakers was98%/92% (IV accuracy/OOV rejection); for
the hands-free data, it was98%/80%.

1. INTRODUCTION

Recently there has been a sharp increase in the use of wire-
less communication devices, such as mobile phones, in the
car. Since such driving while dialing fits the classic defi-
nition of a “hands-busy, eyes-busy” task for which speech
recognition is a natural and effective solution, not only con-
venience, but also safety concerns motivate the use of voice
technology in this situation.

The evolving demands of speech recognition in the
car and their impact on technological developments are
summarized in [1]. Speaker-independent recognition in a
car is addressed in [2–4] using whole word and sub-word
units. Speaker-dependent recognition has been addressed
by Lockwood, et al. [5, 6, and related work], whose results
are based on a database containing only4 speakers. They
also do not address the issue of out-of-vocabulary (OOV)
rejection. In this paper we present results that include OOV
rejection using a database containing20 speakers.

In Section 2 we describe a database collected at Texas
Instruments that was used for evaluating our name dialing
system. In Section 3 we outline two enrollment schemes
that result in word-based and phone-based models respec-
tively. An out-of-vocabulary rejection algorithm is de-
scribed in Section 4. Recognition results are presented in
Section 5 and conclusions in Section 6.

2. TEST CORPUS

The test corpus comprised speech data from 20 speakers (10
male and 10 female) collected in a car in three driving con-
ditions: parked car (engine off), local streets within a city,
and on the highway. The average speed in the city driving
condition was35 mph, but portions of the data were also
collected when the car was waiting at a traffic light. For
the highway condition, the speed was60 mph or greater.
The windows were closed and the radio and fan switched
off. The subject was seated in the front passenger side and
the data recorded simultaneously on a DAT via three typi-
cal microphones: one was placed in a cellular handset, and
the other two were visor-mounted. We downsampled the
speech to8 kHz before using them in our experiments.

Data for training (parked car only) and evaluation (all
conditions) were collected. Each speaker spoke60 names
(<first-name ><last-name >), of which 25 were
common and the remaining unique;10 of the unique
names were set aside for OOV testing, resulting in an in-
vocabulary (IV) list size of50. Additionally, there were
40 command phrases and20 digit strings of lengths four,
seven, and ten. Digit strings were not repeated, and in-
dividual digits were uniformly distributed except for zero,
which occurred twice as often to allow for “oh-zero” vari-
ations, although no restrictions were placed on the speaker
to pronounce one variant over the other. Each prompt sheet
was read twice per session, and sessions were separated by
enough time (subject to the speaker's convenience) to min-
imize inter-session effects. Only the name dialing portion
of the corpus is of relevance to the work described in this
paper.

3. ENROLLMENT

3.1. Energy-Based Endpointing

Data collected in the parked car condition were used for en-
rollment. Two tokens were used to build the model asso-
ciated with a name. The first token was endpointed based



on energy and an HMM seed model built from the extracted
frames (refer to [7, chapter 6] to learn more about HMMs);
the second token was used for updating the seed model.
Each state in the model had a self-loop, single skip, and a
progress path to the next state. Based on alignment failures
during the update phase and later on recognition errors, a
few problems in endpointing were corrected manually and
the models retrained.

3.2. Recognition-Based Endpointing

A set of mean-removed context-dependent phones trained
on TIDIGITS [8] was used for endpointing the first token
using simple phone-loop grammar with optional between-
phone silence. After the initial alignment, each phone
model was rebuilt from the enrollment utterance by assign-
ing a state to each frame and initializing it with that frame's
acoustic vector, after adding back the enrollment utterance
mean. Only the mean of the distribution of each state was
updated using the second token. A name-specific global
variance was used since only two repetitions of each name
are available. This variance was estimated from the first
enrollment utterance and raised to a power; in our experi-
ments, the exponent was0:5. This is an ad hoc procedure
whose efficacy is established only by experimental results
at this point.

Compared with word models, phone-based HMMs have
the advantage of benefiting from various degrees of distri-
bution tying. Moreover, their duration can be used to obtain
good OOV rejection, although in this paper we have not ex-
ploited this property.

4. OUT-OF-VOCABULARY REJECTION

In a practical system, a user is occasionally likely to utter
phrases that are not on his list. A resulting substitution er-
ror, rather than a rejection, can be very costly because it will
result in dialing the wrong number. Many papers in the re-
cent past [9, 10, for example] have addressed the issue of
recognition confidence in the larger context of continuous
speech recognition. These methods are too complicated for
our purposes. Instead, we use just the likelihood score dif-
ference between the top two hypotheses for OOV rejection.

In speaker-dependent name recognition, when an in-
vocabulary item is recognized, the likelihood score is very
good and the score difference between the best and second-
best hypothesis is large. For an OOV item, not only is
the likelihood score poorer but also the score difference
between the best and next hypotheses tends to be much
smaller. Therefore one can use the delta score to detect an
OOV item. In Figure 1(a), histograms of the IV and OOV
delta scores in the phone-based system for the city driv-
ing condition are shown, after compensating for noise using

Parallel Model Combination (PMC) [11]. In Figure 1(b),
the same parameter is shown as a function of signal-to-noise
ratio (SNR). From that figure it is clear that delta score can
be used quite reliably to distinguish between IV and OOV
names, and the dashed line shows a simple SNR-dependent
separation boundary.
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Figure 1: (a) Histograms of IV and OOV delta scores for
the cepstral front end and phone-based models in the city
driving condition. PMC was used for compensating noise.
(b) IV and OOV delta scores as a function of SNR.

Including the ability to reject names has the added ad-
vantage of converting most IV substitutions (a costly error)
into IV rejections (a benign error), as borne out by the re-
sults presented in the next section.



5. RECOGNITION RESULTS

The names were enrolled in the parked car and tested in the
following conditions: parked, city driving (“stop-and-go”),
and highway driving. Results from the hand-held and one
out of the two hands-free microphones are given next.

5.1. Hand-held Microphone

Only word models were used for testing the hand-held data.
The analysis window was30 ms, the frame period20 ms,
and the feature dimension16. The filterbanks were ob-
tained from an LPC-based spectrum [12] and a decorrelat-
ing eigen transformation was used to reduce dimensionality.
A method similar to PMC was used to combat noise. The IV
and OOV results are given in Table 1. These were obtained
by averaging the results from the20 speakers. For each
speaker, the IV performance was tested using100 tokens
(50 names repeated twice), while the OOV performance was
tested using20 tokens (10 names repeated twice). For the
parked car condition, the unused OOV names from the train-
ing session were also used for testing. The rejection bound-
ary was adjusted so that OOV rejection was no less than
75% while maintaining about98% IV accuracy.

Condition IV Corr IV Sub OOV Rej

Parked 98.4 (100.0) 0.0 92.7
Stop-n-go 98.5 (99.9) 0.0 91.7
Highway 97.7 (99.8) 0.0 91.8

Average 98.2 (99.9) 0.0 92.2

Table 1: Results for hand-held data with word models. The
numbers in parentheses represent IV correct when there is
no OOV rejection.

The numbers in parentheses correspond to IV correct
without OOV rejection: the recognition is almost error-
free. With rejection turned on, the accuracy drops to98:2%.
OOV rejection is also very good, averaging to92:2% over
all conditions. The rejection performance was obtained by
post-processing the recognition results, using delta-score in-
formation. The SNR for each file was calculated off-line
and was used to determine the SNR-dependent delta thresh-
old.

We tried experiments in which the likelihood score of
the best hypothesis was also used for OOV rejection. Al-
though it did improve rejection, the improvement was not
significant. Moreover, absolute score has the disadvantage
of being dependent on speaker and environment. On the
other hand, delta score is far less sensitive to these varia-
tions and hence simpler to use. Similar remarks also apply
to the results presented in the next section.

5.2. Hands-free Microphone

A cepstral front-end was used for testing the hands-free mi-
crophone data. The feature dimension was16 (8 static and8
dynamic cepstra derived from20 mel-spaced triangular fil-
terbanks), the window length32 ms, and the frame period
20 ms. PMC was used to combat noise. IV and OOV re-
sults for word models are given in Table 2. Because of the
simultaneous recording, the structure of the hands-free test
data is identical to that described in the previous section.

Condition IV Corr IV Sub OOV Rej

Parked 98.0 (99.7) 0.3 81.6
Stop-n-go 98.5 (99.7) 0.1 75.9
Highway 96.0 (99.4) 0.2 75.2

Average 97.5 (99.6) 0.2 78.6

Table 2: Results for hands-free data with word models.

As in Table 1, the numbers in parentheses represent IV
accuracy without OOV rejection, which average to99:6%
over all conditions. With OOV rejection, this number drops
to 97:5%. The delta threshold was adjusted so that the OOV
rejection was around75%. We did not tune the separation
boundary extensively to get the best IV/OOV performance
because, in the absence of data from a different microphone
and/or car, one might end up tuning it to this particular test
set.

Condition IV Corr IV Sub OOV Rej

Parked 99.0 (99.8) 0.0 86.0
Stop-n-go 98.0 (99.8) 0.0 82.0
Highway 95.7 (99.6) 0.1 73.5

Average 97.6 (99.8) 0.0 80.5

Table 3: Results for hands-free data with phone-based
models. The dashed line in Figure 1(b) shows the SNR-
dependent delta threshold that was used for OOV rejection.

Results using phone models are given in Table 3. Com-
pared with those given in Table 2, we see that phone-based
models are slightly better in the stop-and-go and highway
driving conditions. These models had a more restricted
topology: across phone boundaries, entry was permitted
only into the first state of the succeeding phone. Allow-
ing for entry into the second state also gave slightly poorer
performance.

6. CONCLUDING REMARKS

Speaker-dependent name dialing with OOV rejection capa-
bility in a noisy car environment has been shown to perform



very well. We discussed two different endpointing methods
that give rise to word- and phone-based models. These give
very similar results, although phone models have the poten-
tial for distribution tying and improved OOV rejection based
on phone duration. The OOV rejection method described in
Section 4 is simple and yet at the same time quite effective.
Because of database limitations, we have not tested our sys-
tem using different cars or microphones. For a larger list
size, OOV rejection is likely to suffer more than IV recogni-
tion, though we cannot predict the extent of the degradation.
The front ends used for testing the hand-held and hands-free
data, while different, are very similar in philosophy, and ex-
pected to perform very similarly. The name dialing system
has been implemented on the TI C54x DSP platform.
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