
TEACHING DSP CONCEPTS USING MATLAB AND THE TMS320C31 DSK

Cameron H. G. Wright

Department of Electrical Engineering
U.S. Air Force Academy, CO

c.h.g.wright@ieee.org

Thad B. Welch

Department of Electrical Engineering
U.S. Naval Academy, MD

t.b.welch@ieee.org

Walter J. Gomes III

Naval Undersea Warfare Center
Newport, RI

gomesw@code80.npt.nuwc.navy.mil

ABSTRACT

A graphically-oriented MATLAB program written by the au-
thors facilitates teaching real-world digital signal process-
ing concepts such as quantization of digital filter coeffi-
cients that occur in fixed-point processors, for example the
widely used TMS320C5x. While many universities have
or plan to buy the inexpensive floating-point TMS320C31
DSKs for pedagogical reasons, this MATLAB program sim-
ulates certain fixed-point effects on these floating-point de-
vices and eliminates the need to purchase expensive special-
ized software programs or extra hardware. The program de-
scribed in this paper provides an interactive graphical user
interface which communicates directly with the DSK, and
demonstrates in real-time how coefficient quantization ad-
versely affects filter performance, without the need for te-
dious programming of the TMS320C31.

1. INTRODUCTION

Modern software tools such as MATLAB greatly facilitate a
professor’s ability to demonstrate the concepts of digital sig-
nal processing (DSP) in class and to assign realistic projects
to reinforce these concepts [1–3]. An increasing number
of DSP textbooks are becoming available which take ad-
vantage of this ability [4–8], and a growing trend is for
DSP concepts to be introduced earlier in the curriculum [9].
These concepts can be further reinforced, and greater inter-
est generated by the students, if they can be easily imple-
mented in real-time on modern DSP hardware. Affordable
hardware is now available to schools: Texas Instruments,
for example, markets DSP Starter Kits (DSKs) for $99 [10].
While fixed-point processors are more prevalent in indus-
try [11], floating-point processors are becoming more popu-
lar for schools due to pedagogical reasons. We will examine
how MATLAB , already accepted as a powerful learning tool
for DSP, can be closely integrated with a DSK for teaching
purposes while avoiding the tedium of manually program-
ming the DSP processor.

This work was supported by the National Science Foundation and the
Air Force Office of Scientific Research.

1.1. Teaching with MATLAB

MATLAB is an excellent learning tool for DSP education,
enabling an easier transition for the student from theory to
practice. In particular, thesptool program supplied with
the latest release of the student edition of MATLAB (version
5) and also available in the latest Signal Processing Tool-
box (version 4.x, written for MATLAB 5.x Professional) pro-
vides an excellent interactive graphical user interface (GUI)
for designing both FIR and IIR digital filters [12].

Various filter specifications can be easily selected by the
student, with a customizable display of the resulting mag-
nitude, phase, impulse response, step response, poles and
zeros on thez-plane, and/or group delay. The student can
modify the design parameters and interactively see the re-
sults. The student can also process any stored signal with
the desired filter and view the resulting output signal and its
associated spectrum. Thesptool program encourages the
student to pursue “what if?” explorations to satisfy their in-
tellectual curiosity and gain a more complete understanding
of the underlying DSP concepts.

1.2. Teaching with DSKs

Another powerful tool to energize and excite students is
the ability to implement a particular signal processing tech-
nique in real-time on a DSP microprocessor such as one of
the Texas Instruments (TI) TMS320C series. When a stu-
dent speaks into a microphone and hears their “personally
designed” digital filter algorithm working in real-time, they
are often “hooked” on DSP from then on. The recent avail-
ability of affordable DSP Starter Kits (DSKs) has made this
feasible for most schools. The kits typically come with an
assembler and debugger—sometimes even a C compiler.

There are obstacles to using DSKs, however. The learn-
ing curve for programming modern DSP microprocessors
is a significant hurdle for most students. They must con-
tend with specialized topics such as parallel instruction exe-
cution, block-repeat, bit-reversed addressing, and the often
unfamiliar Harvard architecture—and must usually program
at the assembly language level. This scares away many
students. While fixed-point processors are more prevalent
in industry due to their cost and speed advantages, they

add further problems: coefficient quantization, scaling, and
other fixed-point ALU and register effects. From a peda-
gogical point of view, fixed-point processors (such as the
widely-used TI TMS320C5x series) tend to be harder to
teach in introductory courses compared to floating-point pro-
cessors such as the TMS320C3x and TMS320C4x. For this
reason, many schools are opting to buy floating-point DSP
hardware (such as the $99 C31 DSK from TI) for teaching
purposes. While the fixed-point effects are important con-
cepts for students to grasp, many schools would like a way
to teach this without having to buy additional hardware. The
program described below integrates MATLAB closely with
the C31 DSK, eliminates the need to create individual as-
sembly language or C programs to manipulate the hardware,
and allows the primary fixed-point effects to be simulated in
real-time on the floating-point DSK.

2. COMBINING MATLAB AND THE DSK

What is needed is a GUI-based program for MATLAB that
can communicate seamlessly with the DSK. While the ca-
pabilities provided bysptool are impressive and greatly
facilitate students’ comprehension of various DSP topics,
there is no straightforward way to use it directly with a
DSK. Also lacking insptool is the ability to simulate
for teaching purposes certain fixed-point effects (such as
filter coefficient quantization) prior to using the filter de-
sign in fixed-point hardware, since MATLAB performs dou-
ble precision calculations. Specialized software programs
exist which address this design issue, but they are typically
expensive, require the student to learn another interface, and
typically are not written for educational purposes.

2.1. A Fixed-Point Simulation

In response to this need, the authors wrote a MATLAB pro-
gram which takes up wheresptool leaves off, adjusting
the filter coefficients to simulate fixed-point hardware, al-
lowing interactive analysis of the design effects, and seam-
lessly downloading the filter code to a C31 DSK when the
user is ready. This allows the floating-point DSK to simu-
late a fixed-point device as desired (except for register and
ALU effects, which are less of an issue at the introductory
level), and eliminating the need for buying fixed-point hard-
ware just for this purpose. The program allows the student
to interactively compare the theoretical filter performance
with the real-world performance using any fixed-point DSP
microprocessor, yet still make full use ofsptool . The
program eliminates the need for the student to learn another
software interface, and is perfectly suited to educational use.
While it runs outside ofsptool , it easily exchanges infor-
mation in both directions by using the same data structure
format defined bysptool .

2.2. A Typical Example

In order to examine the effects of digital filter coefficient
quantization, the student merely designs a filter to the de-
sired specifications usingsptool in the normal manner.
The student then exports the filter fromsptool to the MAT-
LAB workspace and runs our program by typingq_filt at
the MATLAB command prompt. This brings up a custom
GUI that allows the user to select with the mouse the co-
efficient quantization method (rounding or truncation, im-
plemented either as a direct form Type II transpose or as
second-order cascaded sections), number of bits (8 to 32),
plotting preference (magnitude vs. frequency, phase vs. fre-
quency, or poles and zeros on the complexz-plane). Note
that the previous version [13] of this program used a com-
mand line interface; we feel the GUI version is more appeal-
ing to students. The program automatically generates and
displays any of the three plots selected which each compare
the floating-point vs. fixed-point filter implementations on
the same plot. To stay within space limitations, only two fig-
ures are shown which depict the program output. A digital
filter was previously designed usingsptool with the fol-
lowing parameters: bandpass elliptic IIR, sample frequency
Fs = 8000 Hz, passband 900–1400 Hz with 3 dB ripple
maximum, transition regions of≤ 50 Hz, and stop band
attenuation of≥ 70 dB. The resulting design produced by
sptool is an 8th order filter with actual stopband edges at
872 Hz and 1438 Hz. When the filter coefficients have been
quantized byq_filt to 16 bits (as would be the case with
the Texas Instruments TMS320C5x), the result is shown in
Figures 1 and 2.

With quantization effects, the filter performance is al-
tered radically. There are significant changes to the origi-
nally calculated magnitude (Figure 1) and phase (not shown)
response of the filter, which were predicated on the assump-
tion of floating-point processing. Withoutq_filt , the stu-
dent would likely assume that the filter design fromsptool
would meet the desired specifications. By using this addi-
tional program, however, the student gains a better under-
standing of the design ramifications of a fixed-point digital
filter realization, including the significant differences of the
direct form versus second-order section implementations.
But this isn’t the whole story!

There is always a danger in relying too heavily on the re-
sults of computer simulations and blindly accepting the re-
sults. The filter used for the example above clearly demon-
strates this, as even the filter magnitude and phase response
after quantization can be misleading. It is evident in Fig-
ure 2 that due to the quantization process, some poles have
moved outside the unit circle on the complexz-plane. As-
suming this is a causal filter design, this implies that the re-
gion of convergence for thez-transform doesnotcontain the
unit circle, meaning the filter design is unstable. We can ver-
ify this by importing the quantized filter back intosptool

0 500 1000 1500 2000 2500 3000 3500 4000
−250

−200

−150

−100

−50

0

50
UNSTABLE − poles outside the unit circle (16 Bit Filter Coefficient Quantization Using Rounding)

frequency (Hz)

m
ag

ni
tu

de
 r

es
po

ns
e

(d
B

)

quantized
double precision

Figure 1: Magnitude plot before (solid) and after (dashed) quantizing the filter coefficients.

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Real part

Im
ag

in
ar

y
pa

rt

UNSTABLE − poles outside the unit circle (16 Bit Filter Coefficient Quantization Using Rounding)

Figure 2: Pole-zero plot before (smaller symbols) and after (larger symbols) quantizing the filter coefficients. Symbols used
in the plot: poles shown as “x ” and zeros shown as “o.”

and examining the impulse response. As expected, the filter
“blows up” and would be unstable. Yet the quantized filter
magnitude response in Figure 1, while no longer meeting
the design specifications, doesn’t look unstable. How do we
explain this discrepancy? We routinely tell our students that
no matter how fast the computer simulation may be, the stu-
dents are smarter than the computer, and toalwaysperform
a “sanity check” on any results. In this case, Figure 2 would
indicate a stability problem. MATLAB evaluates the magni-
tude and phase response of a discrete transfer function by
substitutingz = ejω (mathematically equivalent to eval-
uating the discrete-time Fourier transform (DTFT) of the
filter). The student should know, however, that if the unit
circle is not contained in the region of convergence of the
z-transform, then the DTFT does not exist, and the magni-
tude and phase response as calculated by MATLAB is mean-
ingless. Since MATLAB doesn’t check for this condition,
we added a routine inq_filt which detects it and warns
the user by showing the plot with a red background and a
special plot title. If no poles move outside the unit circle
as a result of quantization, or we are dealing with FIR fil-
ters (which have no poles), then the calculated magnitude
and phase response will be valid; in this case the plot back-
ground is white.

When the filter design is satisfactory, the user can sim-
ply click the “Load/Run DSK” button on the GUI to down-
load the software to the C31 DSK and run the filter algo-
rithm for a real-time demonstration. No programming is
necessary, making this especially attractive for introducing
students to DSP hardware. The C31 DSK can be used as a
floating-point unit or as a simulated fixed-point unit using
q_filt .

3. CONCLUSIONS

The programq_filt written by the authors provides the
educator with an easy to use, inexpensive, and interactive
method to teach the concepts of filter coefficient quantiza-
tion. The program is completely compatible withsptool ,
provided with version 5 of the Student Edition of MATLAB

and also with version 4.x of the Signal Processing Toolbox.
It easily communicates with the C31 DSK used by many
universities, eliminates the need for tedious programming
of the DSK, and is available free of charge from the authors
via a Web site (the actual address was not finalized at time
of publication).

4. REFERENCES

[1] R. F. Kubichek, “Using MATLAB in a speech and
signal processing class,” inProceedings of the 1994
ASEE Annual Conference, pp. 1207–1210, June 1994.

[2] C. S. Burrus, “Teaching filter design using MATLAB ,”
in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing, pp. 20–
30, Apr. 1993.

[3] R. G. Jacquot, J. C. Hamann, J. W. Pierre, and R. F.
Kubichek, “Teaching digital filter design using sym-
bolic and numeric features of MATLAB ,” ASEE Com-
puters in Education, vol. VII, pp. 8–11, January-
March 1997.

[4] B. Porat,A Course in Digital Signal Processing. John
Wiley & Sons, 1997.

[5] V. K. Ingle and J. G. Proakis,Digital Signal Process-
ing UsingMATLAB V.4. Bookware Companion Series,
PWS Publishing, 1997.

[6] S. K. Mitra, Digital Signal Processing: A Computer-
Based Approach. McGraw-Hill, 1998.

[7] A. Ambardar and C. Borghesani,Mastering DSP Con-
cepts UsingMATLAB . Prentice-Hall, 1998.

[8] J. H. McClellan, C. S. Burrus, A. V. Oppenheim, T. W.
Parks, R. W. Schafer, and S. W. Schuessler,Computer-
Based Exercises for Signal Processing UsingMAT-
LAB 5. MATLAB Curriculum Series, Prentice-Hall,
1998.

[9] M. A. Yoder, J. H. McClellan, and R. W. Schafer, “Ex-
periences in teaching DSP first in the ECE curricu-
lum,” in Proceedings of the 1997 ASEE Annual Con-
ference, June 1997. Paper 1220-06.

[10] Texas Instruments, Inc.,TMS320C3x DSP Starter Kit
User’s Guide, 1996.

[11] C. Inacio and D. Ombres, “The DSP decision: Fixed
point or floating?,”IEEE Spectrum, pp. 72–74, Sept.
1996.

[12] The MathWorks, Inc., Natick, MA, MATLAB : The
Language of Technical Computing, 1996.

[13] C. H. G. Wright and T. B. Welch, “Teaching real-
world DSP using MATLAB ,” in Proceedings of the
1998 ASEE Annual Conference, (Seattle, WA), June
1998. Paper 1220-03.

