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ABSTRACT

Partial updating of LMS filter coefficients is an effective method
for reducing the computational load and the power consumption
in adaptive filter implementations. Only in the recent past has any
work been done on deriving conditions for filter stability, conver-
gence rate, and steady state error for the Partial Update LMS al-
gorithm. In [5] approximate bounds were derived on the step size
parameter� which ensure stability in-the-mean of the alternating
even/odd index coefficient updating strategy. Unfortunately, due
to the restrictiveness of the assumptions, these bounds are unre-
liable when fast convergence (large�) is desired. In this paper,
tighter bounds on� are derived which guarantee convergence in-
the-mean of the coefficient sequence for the case of wide sense
stationary signals.

1. INTRODUCTION

Partial updating of the LMS adaptive filter has been proposed to re-
duce computational costs [2, 3, 4]. In this era of mobile computing
and communications, such implementations are also attractive for
reducing power consumption. However, theoretical performance
predictions on convergence rate and steady state tracking error are
more difficult to derive than for standard full update LMS. Accu-
rate theoretical predictions are important as it has been observed
that the standard LMS conditions on the step size parameter fail to
ensure convergence of the partial update algorithm.

The two types of partial update LMS algorithms that are preva-
lent in the literature have been described in [5]. They are referred
to as the “Periodic LMS algorithm” and the “Sequential LMS al-
gorithm”. An attempt was made to recalculate the bounds on the
step-size parameter for both mean and mean-square convergence.
Due to simplifying assumptions, the bounds derived turned out
to be the same as those for the standard LMS algorithm. It was
shown, however, that these bounds fail to predict situations where
the Sequential LMS algorithm is unstable when implemented with
these standard step-size constraints.

In this paper we derive bounds on the step-size parameter which
ensures convergence in mean for the special case involving alter-
nate even and odd coefficient updates. The bounds are based on
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extremal properties of the matrix2-norm and the Bauer-Fike the-
orem. For simplicity we assume all sequences to be real and sta-
tionary and we make the standard independence assumptions used
in the analysis of LMS [1]. It is shown that as the input signal be-
comes more correlated the bounds become much tighter than the
bound approximation derived in [5].

The organization of the paper is as follows. First in Section 2,
a motivating example is shown which illustrates the need for this
work. This is followed by a brief description and analysis of the
partial update algorithm in Section 3. In Section 4 verification of
the theoretical analysis is carried out via simulations. Finally con-
clusions and directions for future work are indicated in Section 5.

2. MOTIVATING EXAMPLE

Consider a 2-tap adaptive filter with alternating update of the first
and second coefficientsw1;k andw2;k. For oddk, the updates are
given by�
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And for evenk, the updates are given by�
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ek is the error signal given byek = dk �W T
k Xk whereWk =

[w1;k w2;k] andXk = [xk xk�1]. dk is the desired response.
Now make the standard assumption [1] that there exists a co-

efficient vectorWopt such thatdk = W T
optXk + nk with fnkg a

zero mean i.i.d sequence independent of the input sequencefxkg.
Then definingVk = [v1;k v2;k]

T = Wk � Wopt, for odd k we
have the following update equation.�
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Assumingfvkg andfxkg to be uncorrelated with each other and
Xk+1 to be independent ofXk with E[x2k] = 1, E[xkxk�1] =



� andE [xkxk�2] = �2 and taking expectations of the update
equations we obtain
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It can be easily verified that for� � 1 and� � 0 the necessary
and sufficient condition on� for stability of the recursion (4) is
given by

0 < � <
2(1� �)

�2
(5)

whereas, using the update equations for expected values of coeffi-
cient error in [5], the condition in [5] for convergence is

0 < � <
2

1 + �
: (6)

As (1��2)=�2 < 1 for �2 > 1=2, we have that2(1��)
�2

< 2
1+�

so
that if the upper bound in condition (6) is used to set� in partial
update LMS, divergence occurs.

3. ALGORITHM DESCRIPTION AND ANALYSIS

It is assumed that the filter is a standard FIR filter of even length,
N . For convenience, we start with some definitions. Letfxkg be
the input sequence and letfwi;kg denote the coefficients of the
adaptive filter. Define

We;k = [w2;k w4;k w6;k : : : wN;k]
T

Wo;k = [w1;k w3;k w5;k : : : wN�1;k]
T

Xe;k = [xk�1 xk�3 : : : xk�N+1]
T

Xo;k = [xk xk�2 : : : xk�N+2]
T

Wk = [w1;k w2;k : : : wN;k]
T

Xk = [xk xk�1 xk�2 : : : xk�N+1]
T

where the terms defined above are for the instantk. In addition,
Let dk denote the desired response. In typical applicationsdk is
a known training signal which is transmitted over a noisy channel
with unknown FIR transfer function.

In this paper we assume thatdk itself obeys an FIR model
given bydk = W T

optXk + nk whereWopt are the coefficients of
an FIR model given byWopt = [w1;opt : : : wN;opt]

T . Herefnkg
is assumed to be a zero mean i.i.d sequence that is independent of
the input sequencefxkg. This is a standard assumption used in the
analysis of the standard LMS algorithm [1] which can be shown to
be reasonable for jointly stationaryxk anddk.

The coefficient updates for oddk in the partial update LMS
algorithm considered here are given by
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and for evenk�
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whereek is the error and is defined to beek = dk �W T
k Xk

We also define coefficient error vectors as

Ve;k = We;k �We;opt

Vo;k = Wo;k �Wo;opt

Vk = Wk �Wopt

V eo
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�
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where

We;opt = [w2;opt w4;opt w6;opt : : : wN;opt]

Wo;opt = [w1;opt w3;opt w5;opt : : : wN�1;opt]

Assuming thatfxkg is a WSS random sequence, we analyse
the convergence of the mean coefficient error vectorE [Vk]. For
regular LMS algorithm the recursion forE [Vk] is given by

E [Vk+1] = (I � �R)E [Vk] (9)

whereI is theN -dimensional identity matrix andR = E
�
XkX

T
k

�
is the input signal correlation matrix. The necessary and sufficient
condition for stability of the recursion is given by

0 < � < 2=�max (10)

where�max is the maximum eigen-value of the input signal cor-
relation matrixR.

For oddk, combining the even and odd update equations and
writing them in terms ofV�;k, we obtain
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We next make the standard assumptions thatVk andXk are
mutually uncorrelated and thatXk is independent ofXk�1 [1].
These assumptions are somewhat restrictive but greatly simplify
the analysis. Taking expectations, using the independence assump-
tion on the sequencesXk; nk, the mutual independence assump-
tion onXk andVk, and simplifying we obtain
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eo. Under the assumption of even
integerN and real w.s.s.fxkg it can be shown thatRe = Ro.

For evenk, combining the even and odd update equations and
writing them in terms ofV�;k, we obtain
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where the elements ofF 0 are
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Taking expectations, and using the same assumptions as above,
we obtain

E [V eo
k+2] = (I � �R00)E [V eo
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It can be shown that under the above assumptions onXk; Vk
anddk, the convergence conditions for even and odd update equa-
tions are identical. We therefore focus on (12). If we want to write
the update equations for the regular LMS algorithm in the same
form as (12) we would have

E [V eo
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which is the same as (9) only expressed in a different form. It
should be noted here that even though

R 6=

�
Re Reo
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�

the matrix on the right is the correlation matrix for a permuted form
of the input signal and therefore is also an input signal correlation
matrix with the same eigenvalues asR.

Now to ensure stability of (12), the eigenvalues ofI � �R0

should lie inside the unit circle. To estimate the eigenvalues ofI�
�R0 we employ the Bauer-Fike theorem [6, p. 321] which states
that if �0 is an eigenvalue ofA + E 2 Cn�n andM�1AM =
diag(�1; : : : ; �n) then
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wherek�kp denotes any of thep-norms and�p(M) = kMkpkM
�1kp.

For convenience, we will choosep = 2.
Now writing I � �R0 asA+E where
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that is so because�2(M) = 1 on account ofA being an Hermitian
matrix which admits a matrix of orthogonal eigenvectorsM . Now
E can be written asE = BC where
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Using the properties of the matrix2�norm [6, pp. 56-57] we
obtain

kEk2 � �2
N

2
max
i;j

jbij j�max � �2
N

2
R(0)�max (22)

where�max is the largest eigenvalue of the matrixC which is the
correlation matrix of the permuted input signal. If we let� =
N
2
R(0)�max we have the simple bound
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Since the set of�0 ’s is a subset of the set of�’s and since�j =
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Recall that� = N
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which is the sufficient condition ensuring convergence of (12) and
is the main result of this paper.

This condition when applied to the motivating example gives
us the bound on�: 0 < � < (1� �)=(1 + �) which satisfies (5).
It should be noticed that as the signal becomes more correlated
�min ! 0 making the bound tighter.
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Figure 1: Trajectory ofw1;k andw2;k for � = 0:005
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Figure 2: Trajectory ofw1;k andw2;k for � = 0:5

4. SIMULATIONS

We have plotted the evolution trajectory of the 2-tap filter consid-
ered in Section 2 for� = 0:99 andWopt = [0:4 0:5] in Figures
1 and 2. For Figure 1� was chosen according to condition (31)
and for Figure 2� was chosen according to (10) which is the con-
dition given in [5] for convergence in-the-mean. For simulation
purposes we setdk = W T

optSk + nk whereSk = [sk sk�1]
T is

a vector composed of the w.s.s. AR processfskg with variance
equal to 1 and AR coefficient� = 0:99, andfnkg is a white se-
quence, with variance equal to0:01, independent offskg. We set
fxkg = fskg + fvkg wherefvkg is a white sequence, with vari-
ance equal to0:01, independent offskg. As can be seen from
Figure 2 stricter conditions are needed for convergence in mean
than those given by (10).

5. CONCLUSION

We have analyzed the alternating odd/even partial update LMS al-
gorithm and we have derived stability bounds on step-size param-
eter� for wide sense stationary signals based on extremal prop-
erties of the matrix2-norm. While these may not be the weakest
possible bounds, they do provide the user with a useful sufficient

condition on� which ensures convergence in the mean. The anal-
ysis also leads directly to an estimate of mean convergence rate.
Mean-square convergence analysis was not undertaken in this pa-
per as the primary motivation was to show that current bounds on
step-size are not sufficient to guarantee convergence. Theoretical
analysis in the manner considered here for the general case of “Se-
quential LMS Algorithm” is more complicated but feasible.
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