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ABSTRACT extremal properties of the matrixnorm and the Bauer-Fike the-

) ] ] o ) ) orem. For simplicity we assume all sequences to be real and sta-
Partial updating of LMS filter coefficients is an effective method tionary and we make the standard independence assumptions used
for reducing the computational load and the power consumption i the analysis of LMS [1]. It is shown that as the input signal be-
in adaptive filter implementations. Only in the recent past has any comes more correlated the bounds become much tighter than the
work been done on deriving conditions for filter stability, conver- pound approximation derived in [5].
gence rate, and steady state error for the Partial Update LMS al-  The organization of the paper is as follows. First in Section 2,
gorithm. In [5] approximate bounds were derived on the step size 3 motivating example is shown which illustrates the need for this
parametey. which ensure stability in-the-mean of the alternating work. This is followed by a brief description and analysis of the
even/odd index coefficient updating strategy. Unfortunately, due partial update algorithm in Section 3. In Section 4 verification of
to the restrictiveness of the assumptions, these bounds are unreme theoretical analysis is carried out via simulations. Finally con-

liable when fast convergence (large is desired. In this paper,  clusions and directions for future work are indicated in Section 5.
tighter bounds o are derived which guarantee convergence in-

the-mean of the coefficient sequence for the case of wide sense

stationary signals. 2. MOTIVATING EXAMPLE

Consider a 2-tap adaptive filter with alternating update of the first

1. INTRODUCTION and second coefficients; , andw, ;. For oddk, the updates are
given by
Partial updating of the LMS adaptive filter has been proposed to re-
duce computational costs [2, 3, 4]. In this era of mobile computing [ W2,k +1 } = { W2,k ] [ HELTk—1 } 1)
and communications, such implementations are also attractive for Wi, k+1 Wi,k 0

reducing power consumption. However, theoretical performance And for event, the updates are given by
predictions on convergence rate and steady state tracking error are '
more difficult to derive than for standard full update LMS. Accu- W gt o 0
rate theoretical predictions are important as it has been observed [ 2k ] = [ ’ ] { ] 2
that the standard LMS conditions on the step size parameter fail to

ensure convergence of the partial update algorithm. ex is the error signal given by, = di — WX, whereW;, =

The two types of partial update LMS algorithms thatare preva- [, | w, ] and X, = [zx zx_1]. di is the desired response.
lent in the literature have been described in [5]. They are referred” "Now make the standard assumption [1] that there exists a co-
to as the “Periodic LMS algorithm” and the “Sequential LMS al-  efficient vectoriv,,; such thatdy, = W, X, + ni with {ns} a
gorithm”.  An attempt was made to recalculate the bounds on the ;o1 mean i.i.d sequence independen?of the input seqyende
step-size parameter for both mean and mean-square convergencgqen definingVi = [v1.x vo.x]” = Wi — Wope, for odd k we
Due to simplifying assumptions, the bounds derived turned out paye the following update equation.
to be the same as those for the standard LMS algorithm. It was

shown, however, that these bounds fail to predict situations where { Vo kgo ]

W1 k1 w1k HerTy

= ®)

the Sequential LMS algorithm is unstable when implemented with
these standard step-size constraints.

In this paper we derive bounds on the step-size parameter which g [ U2,k ] + [ ) HMeZh—1
ensures convergence in mean for the special case involving alter- U1,k K MET kA1 TETE—1 + [Tk 4+1 T k41

nate even and odd coefficient updates. The bounds are based on
where the elements df are

U1,k+2
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p and E [z,x,_2] = p® and taking expectations of the update We also define coefficient error vectors as
equations we obtain

‘/e,k = We,k - We,opt
V1 kt2 po(p—1) 1—p+p’p ULk Vi = Wi—Wop
It can be easily verified that for~ 1 andu = 0 the necessary Ve = { Ver ]
and sufficient condition o for stability of the recursion (4) is Vok
given by where
0< n< 2(1 — p) (5) We,opt = [w2,opt W4,0pt W6,0pt - - - wN,opt]
p Wo,opt = [wl,opt W3, opt Ws,0pt - - - wN—l,opt]
whereas, using the update equations for expected values of coeffi-  Assuming that{z; } is a WSS random sequence, we analyse
cient error in [S], the condition in [5] for convergence is the convergence of the mean coefficient error vedtd¥]. For
2 regular LMS algorithm the recursion fd& [V}] is given by
o<pu< — 6
HETEy © BVl = (I - pR)E V] ©
As (1—p*)/p* < 1for p* > 1/2, we have thaM < wherel is the N-dimensional identity matrix anit = E [X; X} |
that if the upper bound in condition (6) is used to géh [;:’:1I’t|a| is the input signal correlation matrix. The necessary and sufficient
update LMS, divergence occurs. condition for stability of the recursion is given by

0 < <2/ Amaz (10)

where\,. IS the maximum eigen-value of the input signal cor-
relation matrixR.

For oddk, combining the even and odd update equations and
writing them in terms oV ;., we obtain

3. ALGORITHM DESCRIPTION AND ANALYSIS

It is assumed that the filter is a standard FIR filter of even length,
N. For convenience, we start with some definitions. {&t} be
the input sequence and Iétw; ,} denote the coefficients of the

adaptive filter. Define Vied, = (11)
We,k [wo,k Wak Wek -.- WN k]T FVe 4+ g Xe
? ’ ? ’ ’ k 2 T
- Xo X, Xe + Xo
Wo,k = [wl,k w3,k W5,k - - - wN—l,k]T pem L Se k1 o* Hitte+1 L
Xex = [Tho1 Tres ... Teoni1]” where the elements df are
Xo,k: = [l'k- Tp—2 ... l‘k_N+2]T fll = I- UXe,ng:k
We = s man oo wa]” fo = aXaXh
k 1,k W2,k ... WNk ; f21 _ _HXo,k+1XZk+1 + HZXo,k+1XZk+1Xe,kXZk
Xr = [ThTh—1 Th—2 ... Th-N41] for = T —pXop1 Xyt + 102 Xo 1 X 1 Xe k X0
where the terms defined above are for the instanin addition, We next make the standard assumptions thaaind X are
Let ds, denote the desired response. In typical applicatibngs mutually uncorrelated and tha, is independent o\, [1].
a known training signal which is transmitted over a noisy channel These assumptions are somewhat restrictive but greatly simplify
with unknown FIR transfer function. the analysis. Taking expectations, using the independence assump-
In this paper we assume thdt itself obeys an FIR model  tion on the sequenceXy, n, the mutual independence assump-
given byd, = W5, X, + nr whereW,,, are the coefficients of  tion onX; andV}, and simplifying we obtain
an FIR model given b#Wo,: = [W1.0pt ... Wx,ope]” . Here{ny}
is assumed to be a zero mean i.i.d sequence that is independent of EVE,] = (I _ MR') E V] (12)

the input sequencgr, }. This is a standard assumption used in the
analysis of the standard LMS algorithm [1] which can be shown to where
be reasonable for jointly stationagy, andd;,.
The coefficient updates for oddin the partial update LMS I — R’ =
algorithm considered here are given by

I— ,LLRe _,U/Reo

/LRoe (/LRE - I) I— ,URo + ,U/ZRoeReo (13)

r 1T 1 T 1 andR. = E [X. 41 XT.], Ro = E[Xo 1 Xok], Reo = E [ X x XT ],
Wers1 | _ | Wer n perXe g % [ ok ’;] . [Xok Xo k] / [ ik k]
Worst | — | Wor 0 andR.. = E [X,,X”,] = RZ,. Under the assumption of even
) N 3 - - integerN and real w.s.s{z;} it can be shown thaR. = R,.
and for everk _Forever, combining the even e_tnd odd update equations and
_ i i} ) ) ) writing them in terms oV ;., we obtain
We,k'+l _ We,k' 0 o _
i Wo,k+1 | - I Wo,k ] + | perXo k ] ®) Vite = (14)
Fvee 4 =11 Xe k41 X g1 Xok + pnkg1 Xe kg
whereey, is the error and is defined to lag = dj;. — W,;‘FX;c k e Xo ke



where the elements d’ are Using the properties of the matx-norm [6, pp. 56-57] we

obtain
fii = I- /"Xe,k'+1£(g:k+l +2H2Xe,k+1§Zk+1Xo,k§;‘F,k
f’ = _lj’Xe,k+1Xo +/j’ XE,k“‘rlXo XO,kXo N < N
P = Xt e * 1Ell> < i 5 maxbij Aos < 1 5 ROMnes (22)
far = I-— pXo,ng:k
Taki tati d using th i b where\,... is the largest eigenvalue of the matéikwhich is the
t?t Ing expectations, and using theé Same assumptions as abOVeq re|ation matrix of the permuted input signal. If we [t=
we obtain X R(0)Amax We have the simple bound
E[Vifs] = (I — pR")E[VE°] (15)
min |a —a'| < w’B (23)
where aca(A)

2
I—uR" = [ I —pRe + p"ReoRoe  pReo(pRo — I) } (16) For a givenw’ if we definea® = arg min, e, () |a — o[ then we
—pRoc I—pRo have

It can be shown that under the above assumptionX pri/;,
andd, the convergence conditions for even and odd update equa-
tions are identical. We therefore focus on (12). If we want to write
the update equations for the regular LMS algorithm in the same
form as (12) we would have

lo” —a'| < B (24)

Using the propertya| — |b| < |a — b| we have forj =1,...,N

laf| = w8 < |af| < log| + 1°B (25)
eo 1 __ I— HRe _l//Reo eo
EVii] = { —pRoe I—pR, } BV’ a7 Now, invoking the necessary and sufficient condition for sta-
bility of (12)
which is the same as (9) only expressed in a different form. It
should be noted here that even though |a;.| <1 Vj=1,...,N. (26)

Re  Reo ] we obtain the sufficient condition

R# [ Roc Ro

the matrix on the right is the correlation matrix for a permuted form
of the input signal and therefore is also an input signal correlation
matrix with the same eigenvalues Bs

Now to ensure stability of (12), the eigenvalueslof uR’
should lie inside the unit circle. To estimate the eigenvaluds-of
uR' we employ the Bauer-Fike theorem [6, p. 321] which states
that if o’ is an eigenvalue oft + E € C™*™ andM *AM =

lad|+p’B<1 Vj=1,...,N. (27)

Since the set of"’s is a subset of the set of's and sincen; =
1 — pAj, (27) can be ensured by the simpler condition

1 —pXj|+p’B<1 Vj=1,...,N. (28)

diag(ai, . .., an) then A sufficient condition orp which satisfies (28) and hence en-
T sures stability is
min |o — o[ < k(M) E], (18)
agald) A1
0<p<min|ZL, =) Vj=1,...,N. 29
wherel|-||,, denotes any of the-norms andk, (M) = || Ml ||M ~"l,. fos (ﬂ Aj> J (29)
For convenience, we will chooge= 2.
Now writing I — uR’ asA + E where which leads to
I—pR: —pReo Ami 1
A — . min
E= p2RocRe  p2RocReo Recall that3 = X R(0)Amaz, which for w.s.s. {z:} can be
rewritten as? = 3tr(R)Amae, as the trace oR satisfiegr(R) =
we have NR(0). Hence, asV > 2, 2ag = g i < Ci and
min |a — /| < ||E||2 (19)  wehave
aca(A)
. . . )\min )\min 2
that is so because (M) = 1 on account ofd being an Hermitian 0<p< 3 " Awaw ir(B) (31)
matrix which admits a matrix of orthogonal eigenvectfs Now e
E can be written a&y = BC where which is the sufficient condition ensuring convergence of (12) and
0 0 is the main result of this paper.
B = 12Roe 0 (20) This condition when applied to the motivating example gives

us the bound om: 0 < o < (1 — p)/(1 + p) which satisfies (5).
= R:. Reo 1) It should be noticed that as the signal becomes more correlated
R,e R, Amin — 0 making the bound tighter.
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Figure 2: Trajectory ofv; » andws  for p = 0.5

4. SIMULATIONS

We have plotted the evolution trajectory of the 2-tap filter consid-
ered in Section 2 fop = 0.99 andW,,; = [0.4 0.5] in Figures

1 and 2. For Figure L was chosen according to condition (31)
and for Figure 24 was chosen according to (10) which is the con-
dition given in [5] for convergence in-the-mean. For simulation
purposes we set, = WSy, + n, whereS, = [si sk—1]" is

a vector composed of the w.s.s. AR procéss} with variance
equal to 1 and AR coefficient = 0.99, and{n;} is a white se-
quence, with variance equal 801, independent of s;. }. We set
{zr} = {st} + {vx} where{uv:} is a white sequence, with vari-
ance equal td@.01, independent of s, }. As can be seen from
Figure 2 stricter conditions are needed for convergence in mean
than those given by (10).

5. CONCLUSION

We have analyzed the alternating odd/even partial update LMS al-
gorithm and we have derived stability bounds on step-size param-
eteru for wide sense stationary signals based on extremal prop-
erties of the matrix-norm. While these may not be the weakest

possible bounds, they do provide the user with a useful sufficient

condition ony which ensures convergence in the mean. The anal-
ysis also leads directly to an estimate of mean convergence rate.
Mean-square convergence analysis was not undertaken in this pa-
] per as the primary motivation was to show that current bounds on
step-size are not sufficient to guarantee convergence. Theoretical
analysis in the manner considered here for the general case of “Se-
1 guential LMS Algorithm” is more complicated but feasible.
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