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Abstract
Background environmental noises degrade the performance
of speech-processing systems (e.g. speech coding, speech
recognition). By modifying the processing according to
the type of background noise, the performance can be en-
hanced. This requires noise classification. In this paper,
four pattern-recognition frameworks have been used to de-
sign noise classification algorithms. Classification is done
on a frame-by-frame basis (e.g. once every 20 ms). Five
commonly encountered noises in mobile telephony (i.e. car,
street, babble, factory, and bus) have been considered in
our study. Our experimental results show that the Line
Spectral Frequencies (LSF’s) are robust features in distin-
guishing the different classes of noises.

1 Introduction
In our daily life, we encounter different types and levels of
background acoustical noises (e.g. traffic noise, car noise,
office noise etc.). Speech-processing systems (e.g. speech
coding, speech recognition, speaker verification) pick up
those ‘unwanted’ signals along with speech. These noise
signals result in performance degradation of those systems.
For example, the accuracy of a speech recognition device
might severely be affected if the level of noise is high and
there is a mismatch between training and operation condi-
tions [1]. In speech coding, background noises can be coded
with annoying artifacts [2].

Noise classification can be used to reduce the effect of
environmental noises on speech processing tasks. As an ex-
ample, in variable bit rate speech coders, the lowest rate is
used to encode background noises in non-active speech pe-
riods. As environmental noises vary in texture and dynam-
ics, using one coding scheme has proven to be not adequate
for many common types of noises. Noise classification can
be used to design natural-quality multi-mode noise coding
algorithms. Similarly, multi-mode comfort noise generators
can be designed to remedy the noise contrast problem re-
ported in discontinuous transmission-based cellular systems
(i.e. GSM). Recently, the issue of background noise is be-
ing studied by the ITU-T Study Group 12 (Question 17/12:
“Noise aspects in evolving networks” [3]. Noise classifica-
tion is one of the major parts of this study. In [4], a fuzzy
logic noise classifier was designed to distinguish stationary
from non-stationary noises at the frame level.

Noise classification has been used in many other applica-
tions. For example, in programmable hearing-aid devices,
a classification algorithm automatically matches a program

mode with the listening environment of the user [5]. In
noise monitoring systems, classification of environmental
noises is done to help in controlling noise pollution [6].

In this paper, we present the results of our work in de-
signing noise classification algorithms to be used as part of
speech-processing systems in mobile environments.

This paper is organized in five parts. Section 2 discusses
the feature extraction module and the classification algo-
rithms that have been used for our study. In Section 3,
we review the performance evaluation tools we have used.
Classification results from different tests of the classifica-
tion algorithms are given in Section 4. Finally conclusions
are presented in Section 5.

2 Frame-Level Noise Classification
2.1 Feature Extraction

The choice of signal features is usually based on a priori
knowledge of the nature of the signals to be classified. Fea-
tures that capture the temporal and spectral structure of
the input signal are used. Examples of such features are
zero crossing rate, root-mean-square energy, critical bands
energies, and correlation coefficients. The classifier oper-
ates on a frame-by-frame basis using short segments of the
signal, e.g. 20 ms.

Linear Prediction (LP) analysis is a major part of many
modern speech-processing systems. Transformations of lin-
ear prediction coefficients (LPC) (e.g. cepstral, log-area
ratio coefficients, line spectral frequencies) have been used
successfully in many pattern-recognition problems (e.g.
speech recognition, speaker recognition) [7].

We have experimented with different sets of features de-
rived from both the LP coefficients and the LP residual (e.g.
residual critical band energies, zero crossing rate). The line
spectral frequencies (LSF’s) gave the best class separabil-
ity for the noises we considered. Moreover, a Gaussian fit
to each LSF histogram was found to be quite good. Thus,
we have selected the LSF’s as our features for noise classi-
fication. A 10th order LP analysis is performed every 20
ms using the autocorrelation method. A Hamming win-
dow of length 240 samples is used. The LP coefficients are
calculated using the Levinson-Durbin algorithm and then
bandwidth expanded using a factor γ = 0.994. The LP
coefficients are then converted to the LSF domain.

2.2 Classification Algorithms

Four pattern-recognition techniques have been chosen for
our noise classification problem: Quadratic Gaussian Clas-



sifier (QGC), Least-Square Linear Classifier (LS-LC) [8],
Nearest-Neighbor Classifier (NNC) [9], and Decision Tree
Classifier (DTC) [10]. A brief description of these classifi-
cation algorithms is presented below.

A Gaussian classifier is based on the assumption that
feature vectors of each class obey a multivariate Gaussian
distribution. Estimates of the parameters of the Gaussian
PDF of each class (mean and covariance) using the labelled
training data are computed. In the classification stage, an
input vector is mapped to the class with the largest like-
lihood. In linear classifiers, a linear discriminant function
is optimized to maximize class separability. Least-square
optimization algorithm is used to compute the coefficients
(weights) of the linear function.

In NN-type classifiers, for each input feature vector, a
search is done to find the label of the vector in the dic-
tionary of stored training vectors with the minimum dis-
tance. Euclidean distance is commonly used as the met-
ric to measure neighborhood. In k-NN decision rule, the
input feature vector is assigned the label most frequently
represented among the k nearest patterns in the training
dictionary. One major disadvantage of NN classifiers is the
need to store large number of training vectors resulting in
a large amount of computations. As a remedy to this prob-
lem, only prototype vectors from the training data are com-
puted and stored (prototype nearest-neighbor classifier).

A decision tree classifier belongs to the family of machine
learning techniques. During the training phase, a set of
production rules are generated from the labelled data in
the form of a decision tree. The decision tree is then used
to classify unlabelled test vectors. The inductive tool used
in this paper is an implementation of the C4.5 programs
developed by Quinlan [10]. Inductive learning produces
decision trees that use the most discriminative features.
For more details about decision tree-based classification see
[10] and [11].

3 Performance Evaluation
Five commonly encountered noise classes were considered:
car, voice babble, street, bus, and factory. A total of 56250
frames (18.75 minutes), equally distributed between the 5
classes, have been used for training. We have recorded
street noise (traffic noise, pedestrians walking and talking,
and noise from a nearby work area) and bus noise (back-
ground music, background speech, bus engine noise, and
other external transient noises such as passing cars). The
other noises are from the NOISEX-92 database [1]. We have
used the Tooldiag pattern recognition software developed
by Rauber [12] in designing and testing the QGC, LS-LC,
and the k-NN classifiers. The C4.5 inductive learning tool
has been used for the DTC.

To measure the discriminating power of the LSF’s as fea-
tures, we estimated the Bayes error rate. A lower bound
on the Bayes error rate PBayes is a function of the asymp-
totic error rate of the nearest-neighbor decision rule PNN

[9], given as

PBayes ≥ M − 1

M
(1 −

√
1− M

M − 1
PNN), (1)

where M is the number of classes.
This lower bound will be used as our reference point for

the performance evaluation of the different designed clas-
sifiers. For each classification algorithm, we used a cross-
validation testing methodology to evaluate the classifica-
tion performance. A 30% of the labeled frames, selected at
random are used as test vectors while the remaining vectors
were used for classifier training. Five iterations of the Hold-
out cross-validation method [8] have been used to compute
the empirical error rate for each classifier.

4 Classification Results
In some speech-processing tasks, we need to discriminate
speech from noise. For example, a voice activity detec-
tion is used in some wireless communications systems to
enhance systems capacity and prolong the battery life of
portable units. Thus, in this paper we have considered two
cases: noise-only classification (5 noise classes), and noise-
and-speech classification (5 noise classes and speech class).
The classification algorithms were tested using 500 frames
(different from the training data) for each class, and with
other new noises.

4.1 Noise-only Classification

Table 1 gives the empirical error rate evaluated with the
hold-out procedure for the various classifiers. Using Eq. (1)
and the empirical error rate of the 1-NN classifier (19.8%),
the Bayes error rate was estimated at 10.6%. This means
that independent of the classifier structure, the best frame-
level classification accuracy for the 5 selected noises (car,
street, babble, bus, and factory), and with the 10 LSF’s
as features is around 89.0%. From Table 1, both the de-
cision tree classifier and the quadratic Gaussian classifier
approach that optimal error rate with 11.9% and 13.6% re-
spectively. The linear, and the nearest-neighbor classifiers
are less accurate. For the remainder of the paper, we will
focus on comparing the performance of the decision tree
and the quadratic Gaussian classifiers.

Table 1 Empirical error rate for the different classifiers (noise-
only)

Classifier Error Rate

%

Optimal Bayes 10.6

Decision Tree 11.9

Quadratic Gaussian 13.6

3-Nearest Neighbor 17.5

1-Nearest Neighbor 19.8

Linear (least-squares method) 21.9

A detailed presentation of the classification results for
each class is given in the form of a classification matrix.
Tables 2 and 3 show that the classification accuracy is dif-
ferent for each class. For example, accuracy ranging from
90-100% were obtained for car noise, and factory noise.
Street, babble, and bus noises are more often misclassified
with error rates ranging from 20-35%. Even though the
decision tree classifier has a lower empirical error rate than
the Gaussian classifier, the QGC is more robust to new test



vectors. This is due to the parametric nature of the QGC
and its ability to model well the LSF’s feature vectors.

Table 2 Classification matrix: QGC (noise-only)

Babble Car Bus Factory Street

% % % % %

Babble 79.8 0.0 12.8 2.0 5.4

Car 0.0 99.6 0.2 0.2 0.0

Bus 8.8 0.0 85.2 2.2 3.8

Factory 1.0 0.0 5.6 93.2 0.2

Street 1.8 0.0 24.8 2.0 71.4

Table 3 Classification matrix: DTC (noise-only)

Babble Car Bus Factory Street

% % % % %

Babble 71.2 0.0 17.8 3.2 7.8

Car 0.0 100.0 0.0 0.0 0.0

Bus 16.8 0.0 73.6 4.4 5.2

Factory 2.0 0.0 6.4 91.2 0.4

Street 5.2 0.0 25.4 2.8 66.6

4.2 Classification of New Noises

In practical applications of noise classification, the input
noise signals are not constrained to belong to one of the
5 pre-selected noise classes. Thus, a ‘good’ noise classi-
fier should have the ability to map an input feature vector
from a new noise class to the closest pre-selected classes.
We have tested both the QGC and the DTC on 5 new
noise signals (restaurant, shopping mall, sports, subway,
and traffic). The results are presented in Tables 4 and 5. It
is interesting to observe that both classifiers map the new
noises to the noise classes with the same noise events. As
an example, a restaurant noise is composed of simultaneous
conversations (babble noise), background music, and other
ambient noises. Thus, restaurant noise was classified 82.4%
as babble noise and 10.8% as bus noise (which has babble,
and background music).

Table 4 Classification of new noises: QGC

Noise Babble Car Bus Factory Street

% % % % %

Restaurant 82.4 0.0 10.8 4.0 2.8

Shop. Mall 52.4 0.0 2.4 0.0 45.2

Sports 22.8 0.0 6.2 0.0 71.0

Subway 53.0 0.0 21.0 4.0 22.0

Traffic 2.7 0.0 15.2 0.0 82.1

4.3 Noise-and-Speech Classification

In Tables 6–8, we present the classification results for the
noise-and-speech case. Similar results to the noise-only
case were obtained. QGC outperforms DTC in classify-
ing speech and bus noise, with 10% difference in accu-
racy. Speech signal is 91% accurately discriminated from
the noises using the QGC. This suggests that the QGC
classifier using LSF’s as the features provides robust voice
activity detection at the frame level.

Table 5 Classification of new noises: DTC

Noise Babble Car Bus Factory Street

% % % % %

Restaurant 66.5 0.0 18.7 7.0 7.8

Shop. Mall 26.2 0.0 14.7 0.6 58.5

Sports 19.8 1.5 12.3 9.5 56.9

Subway 48.9 0.0 24.0 2.3 24.8

Traffic 0.8 0.0 4.7 0.0 94.5

Table 6 Empirical error rate for the different classifiers (noise-
and-speech)

Classifier Error Rate

%

Optimal Bayes 10.1

Decision Tree 11.6

Quadratic Gaussian 13.6

3-Nearest Neighbor 16.2

1-Nearest Neighbor 18.9

Linear (least-squares method) 33.8

4.4 Classification of Human Speech Like Noise

Human speech-like noise (HSLN) is a kind of babble noise
generated by superimposing independent speech signals.
HSLN of various number of superpositions (N) (1, 2, 4,
...,1024, 4096) were used in [13] to investigate perceptual
discrimination of speech from noise. For example, for low
number of superpositions (below 10), the resulting signal
will sound like a few speakers’ speech. For N between 10
and 200 superpositions, the noise sounds like many speak-
ers in an auditorium (babble-like noise). As N increases,
the noise start to sound like stationary Gaussian-like noise
(Central Limit Theorem). We have used this set of sig-
nals (150 frames each) to test our designed classifiers. The
frame-level classification results are shown in Table 9 for the
noise-only case and in Table 10 for the noise-and-speech
case. Due to the space limitation, we only show the re-
sults from the Gaussian classifier. For the noise-only case,
the HSLN signals were classified as babble noise most of
the time or as bus noise (note that bus noise has babble
as one of its noise events). However, for the noise-and-
speech case, the results are more interesting. For example,
for N = 1, the signal is classified as speech (86.8%) and
as babble (9.3%). On the other hand, for 128 superposi-
tions, the HSLN signal is classified as babble noise (88.7%)
and as speech (5.3%). As N increases, the HSLN signal
is classified more as babble than speech. These classifica-
tion results clearly illustrate the robustness of the designed

Table 7 Classification matrix: QGC (noise-and-speech)

Speech Babble Car Bus Factory Street

% % % % % %

Speech 91.0 7.4 0.0 0.8 0.2 0.6

Babble 4.2 76.0 0.0 12.4 2.0 5.4

Car 0.2 0.0 99.6 0.2 0.0 0.0

Bus 2.4 8.0 0.0 84.0 2.2 3.4

Factory 0.2 1.0 0.0 5.6 93.0 0.2

Street 0.2 1.8 0.0 24.6 2.0 71.4



Table 8 Classification matrix: DTC (noise-and-speech)

Speech Babble Car Bus Factory Street

% % % % % %

Speech 81.6 14.4 0.0 1.8 0.8 1.4

Babble 5.0 70.6 0.0 14.4 2.8 7.2

Car 1.4 0.0 98.4 0.0 0.2 0.0

Bus 2.6 14.4 0.0 74.0 3.4 5.6

Factory 0.6 1.2 0.0 6.4 91.4 0.4

Street 0.6 4.4 0.0 26.2 2.6 66.2

Gaussian classifier. Similar results were obtained for the
decision tree classifier.

Table 9 Classification of HSLN signals: QGC (noise-only)

N Car Factory Street Bus Babble

% % % % %

1 0.7 6.6 0.0 0.7 92.0

4 0.0 0.0 0.7 4.6 94.7

8 0.0 0.0 3.3 11.3 85.4

16 0.0 0.0 3.3 7.3 89.4

32 0.0 0.0 2.0 4.0 94.0

128 0.0 0.0 0.7 5.3 94.0

512 0.0 0.0 3.3 8.0 88.7

1024 0.0 0.0 5.3 3.3 91.4

4096 0.0 0.0 4.6 10.6 84.8

Table 10 Classification of HSLN signals: QGC (noise-and-
speech

N Speech Car Factory Street Bus Babble

% % % % % %

1 86.8 0.7 3.4 0.0 0.0 9.3

4 81.5 0.0 0.0 0.7 1.3 16.6

8 72.9 0.0 0.0 3.3 5.9 17.9

16 51.0 0.0 0.0 3.3 4.0 41.7

32 29.8 0.0 0.0 2.0 3.3 64.9

128 5.3 0.0 0.0 0.7 5.3 88.7

512 0.7 0.0 0.0 3.3 8.0 88.0

1024 1.3 0.0 0.0 5.3 3.3 90.1

4096 0.7 0.0 0.0 4.6 10.6 84.1

5 Conclusion

Frame-level noise classification results have been presented
using four pattern-recognition frameworks. The line spec-
tral frequencies have been used as the features. The
quadratic Gaussian classifier outperforms the other clas-
sifiers tested. The accuracy can be improved substantially
by postprocessing the temporal sequence of decisions (for
instance with a Viterbi type algorithm), however this comes
at the expense of further delay.
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