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ABSTRACT

In this paper, we propose an algorithm for joint estimation
of the angle of arrival (AOA) and delay of each dominant
multipath for the desired user for use in a reduced dimen-
sion space-time RAKE receiver for DS-CDMA communi-
cations that is \near-far" resistant. After we estimate the
desired spatio-frequency signal vector, we propose the 2D
unitary ESPRIT algorithm as our estimator which provides
closed-form as well as automatically paired AOA-delay es-
timates. We e�ectively have a single snapshot of 2D data
and thus require 2D smoothing for extracting multiple snap-
shots. The comparative performance of two 2D smooth-
ing schemes, pre-eigenanalysis and post-eigenanalysis 2D
smoothing, is discussed. The space-time data model for the
IS-95 uplink is presented. The performance of a reduced
dimension space-time RAKE receiver for the IS-95 uplink
using the AOA-delay estimates is assessed through Monte-
Carlo simulations.

1. INTRODUCTION

In this paper, we present joint angle and delay estimation al-
gorithms for both classical DS-CDMA communication sys-
tems and the IS-95 uplink, assuming known spreading wave-
form of the desired user and approximate bit synchroniza-
tion. Our algorithm can accurately estimate the angle of ar-
rival (AOA) and time delay for each multipath component
of the desired user even under \near-far" conditions. We
propose the 2D Unitary ESPRIT algorithm [1] as our esti-
mator which provides closed-form and automatically paired
2D parameter estimates. A major bene�t of the joint esti-
mation algorithm is that the number of multipaths can be
larger than the number of antennas, which overcomes the
limitation of separable estimation. We also present the util-
ity of the joint angle-delay estimates in a reduced dimension
space-time RAKE receiver. The AOA information is also
useful for FDD downlink beamforming or geolocation.

2. SPACE-TIME DATA MODEL FOR IS-95
UPLINK

We omit the detailed discussion of the IS-95 uplink trans-
mitter structure due to limited space. We adopt the space-
time data model for IS-95 uplink discribed in [2]. The j-th
symbol transmitted by the i-th user is described as
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The various quantities in (1) are described below. De�ne

W j
i (t) as Walsh symbol, and j is referred to as the Walsh

function index: j = 1; 2; ::; 64. Pi is the transmitted power
per symbol. !c is the carrier frequency in radians. Tw
is the duration of a Walsh symbol. aIi (t) and aQi (t) are
the PN spreading codes applied to the I and Q channels,
respectively:

aIi (t) = ci(t)a
I(t) aQi (t) = ci(t)a

Q(t)

where ci(t) is the i-th user spreading waveform and
aI(t),aQ(t) are two short codes. Denoting the chip wave-
form as p(t),
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where aIi;n and aQi;n are distinct PN sequences.

The baseband representation of the M � 1 array snap-
shot vector x(t) containing the outputs of each of the M
antennas comprising the array at time t is modeled as
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where d denotes the desired user. a(�) is the spatial re-
sponse of the array. For the sake of notational simplicity,
we assume here that the spatial response vector depends on
a single directional parameter, �, the AOA of a given source.
For a given user i: Ki is the number of di�erent paths the i-
th signal arrives from, �ik denotes the arrival direction of the
k-th multipath, and � ik is the corresponding relative delay
of the k-th multipath. �ik is the complex amplitude of the
k-th multipath arrival for the i-th signal at the reference
element. J multi-user access interferers (MUAI) impinge
upon the array. The vector nw(t) represents the contri-
bution of additive white noise. The data model is easily
modi�ed for classical DS-CDMA communication systems.
The attendant discussion is therefore omitted.



3. JOINT ANGLE AND DELAY ESTIMATION

Our goal is to jointly estimate the AOA and relative de-
lay parameter pairs f(�di ; �di )g; i = 1; � � � ;Kd; under multi-
path propagation and \near-far" conditions. We consider
applying the 2D Unitary ESPRIT algorithm to the data
model formulated in such a way as to exhibit the shift-
invariance property required by ESPRIT. The desired data
model may be achieved by adapting the space-frequency
2D processing scheme previously proposed by Zoltowski[3].
This 2D RAKE receiver was proposed for direct sequence
spread spectrum communication systems and achieve two
primary goals: (1) optimal combination of the desired user's
multipath in a RAKE-like receiver fashion and (2) simulta-
neous cancellation of strong multi-user access interference
and other forms of interference. It only exploits: (1) known
spreading waveform of desired user, (2) approximate bit
synchronization for desired user and (3) known maximum
multipath time-delay spread �max. For the 64-ary orthogo-
nal modulation used in the IS-95 uplink, we need to contruct
64 matched �lters forming a �lter bank at each antenna re-
ceiver. Therefore, this matrix pencil is estimated from the
aforementioned matched �lter outputs containing the \�n-
gers" in a decision directed fashion [3,4].
As shown in [3], after passing the output of each an-

tenna through a matched �lter, whose impulse response is
an oversampled version of the time-reverse and conjugate of
the spreading waveform of the desired user, one estimates
the signal plus interference space-frequency correlation ma-
trix, K̂S+I , during that portion of the bit interval where
the RAKE �ngers occur, and the interference alone space-
frequency correlation matrix, K̂I, during that portion of
the bit interval away from the �ngers. The optimum weight
vector ŵopt for combining the L spectrum values computed
from the Ns pt. DFT of a time window with Ns time sam-
ples encompassing the \�ngers" at each of the M antennas
is the \largest" generalized eigenvector of the ML �ML
space-frequency matrix pencil fK̂S+I ; K̂Ig, which is the so-
lution to the SINR maximizing criterion:

Maximize
w

wHKS+Iw

wHKIw

The asymptotic structure of K̂S+I may be expressed as:
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where we have dropped superscript d for notational sim-
plicity. Assuming the antenna elements to be equi-spaced
along a line and well-calibrated, gi is the complex gain of
the i-th multipath arrival, �i is the relative time-delay of
the i-th multipath arrival, and a(�i) is the array manifold

= [1; ej�; � � � ; ej(M�1)�]
T
, where � = 2�

�
�x sin �i with � is

the wavelength, �x is the interelement spacing, and �i is
the angle of arrival relative to the normal to the array axis.

 denotes the Kronecker product. f(�i) = v(�i) � s where
� is the Schur product and

s = [S(�K�f); :::;S(��f); S(0); S(�f); :::;S(K�f)]T ;
(5)

where L=2K+1 and S(f) is sinc2(fTc) in the case of a
rectangular chip waveform, for example. 1

Tc
is the chip

rate, v(�i) = e�jK�[1; ej� ; � � � ; ej2K� ]
T
, where � = 2��f�i.

Typically, �f = 1
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.
The \largest" generalized eigenvector of the asymptotic

ML�ML matrix pencil fKS+I ;KIg is
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and the ML� 1 estimated signal vector
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De-stacking the M�1 sub-vectors of ês through the mat(�)
operator yields the M � L matrix:

Ês = mat(ês) = mat(K̂Iŵopt) � p
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We consider applying 2D Unitary ESPRIT to Ês so that
the �nal step yields eigenvalues of the form tan
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1: � � � ; Kd. Before we can apply the 2D Unitary ESPRIT al-
gorithm, we need to adjust the structure of Ês such that the
matrix exhibits the shift-invariance property along both the
space and frequency dimensions. Since we know the spec-
trum of the chip waveform, we may divide out the \ampli-
tude taper" represented by s in f(�i) = v(�i) � s. To this

end, de�ne � = diag(s). Post-multiplying Ês by �
�1 yields

Ê
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However, we e�ectively have a single snapshot of 2D data
and thus require 2D smoothing for extracting multiple snap-
shots. Note that the factor e�jK� in v(�i) can be absorbed
in gi such that a(�i) and v(�i) both have Vandermonde
structure which allows us to perform 2D smoothing. We
propose two di�erent orders of processing, pre-eigenanalysis
2D smoothing and post-eigenanalysis 2D smoothing, prior
to applying 2D Unitary ESPRIT. These schemes are dis-
cussed below.

3.1. Post-eigenanalysis 2D smoothing

We need at least Kd=2 snapshots to handle Kd multipaths.
Since there is e�ectively a single snapshot available after
computing ês, we can apply a 2D smoothing technique

to Ê
0

s to extract Kd=2 or more identical rectangular sub-
arrays out of the overall pseudo-array to get the e�ect
of multiple snapshots. Note that the maximum number
of sources 2D Unitary ESPRIT can handle is minimum
f(m1 � 1)m2;m1(m2 � 1)g, given that the size of the sub-
array is m1�m2 and the number of extracted snapshots is
(M�m1+1)� (L�m2+1). Therefore, these relationships
must be satis�ed: minf(m1�1)m2;m1(m2�1)g � Kd and

(M�m1+1)�(L�m2+1) � Kd

2 . Let E(m;l); 0 � m � (M�
m1); 0 � l � (L�m2) denote the (m; l)-th extracted snap-
shot with dimension m1�m2. Applying the vec(�) operator,
we stack the columns of E(m;l) to form the m1m2�1 vector
e(m;l). We then form an m1m2� (M�m1+1)(L�m2+1)

matrix X = [e(0;0);e(1;0); � � � ;e(M�m1 ;L�m2)] which plays
the role of the data matrix needed for 2D Unitary ESPRIT.
The subsequent steps of the 2D Unitary ESPRIT algorithm
are easily applied to calculate f(�i; �i)g; i = 1; � � � ;Kd.

3.2. Pre-eigenanalysis 2D smoothing

As an alternative, we may e�ect 2D smoothing on each
original space-frequency snapshot vector to generate multi-
ple snapshots with lower dimension m1 �m2 and form the



smoothed version of the correlation matrix pencil denoted
fKS+I ;KIg. Note that we need to post-multiply each
space-frequency snapshot by ��1 to achieve the required
Vandermonde structure before performing 2D smoothing
(This also facilitates use of forward-backward averaging).
The e�ect of 2D smoothing is to \decorrelate" the mul-
tipaths such that we can choose the Kd m1m2 � 1 gen-
eralized \largest" eigenvectors of the smoothed version
of fKS+I ;KIg as the Kd \snapshots". Denote E =
[e1;e2; � � � ;eKd

], where ei is the i-th \largest" general-

ized eigenvector of fKS+I ;KIg. The subspace spanned by
X = KIE will be the same as the subspace spanned by

A = [a(�1; �1); � � � ;a(�Kd
; �Kd
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m2� 1 and m1 � 1, respectively. It follows that we can ap-
ply the 2D Unitary ESPRIT algorithm to the m1m2 �Kd

matrix X for joint AOA-delay estimation.

4. REDUCED DIMENSION PROCESSING VIA
JOINT ANGLE-DELAY ESTIMATION

In this section, we develop the reduced dimension space-
time 2D RAKE receiver related to [4] with knowledge of
f(�i; �i)g. As substantiated in [4], reduced dimension pro-
cessing o�ers faster convergence if the compression matrix
is designed judiciously. For the given i-th AOA-delay pair
(�i; �i), the optimal beamformer for the corresponding mul-
tipath arrival is given by the well-known Weiner solution
�iR

�1
I a(�i), where �i =

1

aH(�i)R
�1

I
a(�i)

and RI is the inter-

ference plus noise spatial correlation matrix. The approach
is to optimally combine each multipath component after ap-
plying the optimal beamforming weight vector to the corre-
sponding time sample of the multipath arrival at each an-
tenna. The proposed reduced-dimension space-time RAKE

receiver exploiting the estimates f(�̂i; �̂i)g; i = 1; � � � ;Kd; is
as follows. We may rewrite the maximizing SINR criterion
with the compression matrix Ur as:
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and fK̂st
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st
I g is the full dimension space-time matrix

pencil, which is estimated in a similar way as in [3] by us-
ing time samples instead of the selected frequency samples.
Note that the dimension of fK̂st

S+I ; K̂
st
I g is MNs �MNs.

Making use of the estimated AOA-delay parameter pairs,
we form the compression matrix Ur as:
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and �i = [0; � � � ; 0; 1; 0; � � � :0]T with the 1 in the i-th position
corresponding to the time sample closest to the estimate of
the relative delay of the i-th multipath arrival.
With the paired angle and delay estimated parameters,

we can calculate the decision variable for each possible
Walsh symbol at a given symbol period as:

kŵH
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where x
(j)
F (n) is a space-time snapshot from the j-th

matched �lter encompassing the \�ngers" location (only
one matched �lter output actually has \�ngers"), and ŵr

is the \largest" generalized eigenvector of the \compressed"
Kd �Kd matrix pencil fK̂r

S+I ; K̂
r
Ig.

5. SIMULATION RESULTS

The simulations presented here employ IS-95 uplink sig-
nal model parameters, although our algorithms can be ap-
plied to classical DS-CDMA communication systems with
either periodic or aperiodic spreading codes. The chip pe-
riod is 0.8138 �s; the sampling rate was twice the chip rate;
rectangular chip waveform was used. The number of half-
chip spaced taps at each antenna used to encompass the
delay spread was 16. The number of selected DFT samples
was 9. M = 8 antennas were used. A three-ray multipath
model was used for the desired user wherein the direct path
arrived at an angle of 00 relative to broadside. The SNR's
of the two specular multipaths were 1 and 3 dB below that
the direct path and phase shifted by 900 and 450 at the
array center, respectively.
Joint Angle-Delay Estimation:

Example 1. near-far problem: The MUAI parameters are
listed in Table. 1 for the \near far" problem scenario. Fig-
ure 1 displays the estimated AOA and delay \scatter plots"
obtained from 1000 independent runs with the matrix pen-
cil fK̂S+I ; K̂Ig averaged over 10 Walsh symbol periods, and
the input SNR x of the direct path signal equal to -20 db.
The subarray size (m1;m2) was chosen to be (6; 5). It is ob-
served that the scatter plots obtained with pre-eigenanalysis
2D smoothing are more localized than that obtained using
post-eigenanalysis 2D smoothing. Also, some outliers were
incurred in this simulation example using post-eigenanalysis
2D smoothing.
Example 2. equal input power: Here we create a simula-
tion scenario with equal input power for all the co-channel
users. The signal of the desired user is the same as the ex-
ample 1. The input SNR x of the direct path was equal to
-20db. The other 40 users with di�erent PN codes and sin-
gle path were created with input SNR equal to -20db, and
the AOAs were uniformly distributed within 120�. Figure
2 displays the estimated AOA and delay \scatter plots" ob-
tained from 500 independent runs. The other parameters
are the same as those in Example 1.
Reduced Dimension Processing: Figure 3 displays a

typical result of the 64 normalized decision variables with
the \correct" Walsh symbol index marked with 'x' for a
single trial run for both the reduced dimension and the full
dimension 2D RAKE receiver conducted at x = -21db in Ta-
ble 1. The pre-eigenanalysis 2D smoothing algorithm was
used in estimating f(�i; �i)g; i = 1; 2; 3. Once the �rst three
Walsh symbols have been estimated (using either a train-
ing sequence or some blind initialization algorithm which
was discussed in [4]), K̂S+I and K̂I were averaged over
the three past Walsh symbol periods using only the one
matched �lter output per symbol corresponding to the es-
timated symbol, and the \largest" generalized eigenvector
was applied to each of the 64 Walsh correlator outputs gen-
erated for estimating the next Walsh symbol as in a decision
directed mode of operation presented in [2]. It shows that
a signi�cant increase in separation between the value of the
true Walsh symbol decision variable and the other 63 de-
cision variables can be achieved by using the knowledge of
the angle-delay estimates to e�ect reduced dimension pro-
cessing. Note that the size of the full dimension space-time
correlation matrix is 128 � 128. In contrast, the size of
the reduced dimension correlation matrix is only 3 � 3.
To demonstrate faster convergence with reduced dimen-
sion processing, Figure 4 displays the output SINRs of the



Table 1: Signal and MUAI parameters
Signal MUAI1 MUAI2 MUAI3

SNR 1,2,3 x,x-1,x-3db x+20,x+10, - db x+4,x+6, - db x,x-3, - db
Phase 1,2,3 0o; 45o; 90o 45o; 50o;� �30o;�35o;� 180o; 170o;�
AOA 1,2,3 0o; 7o; 14o 50o; 55o;� �20o;�23o;� �10o;�7o;�

Delay 1,2,3 (� 1
2
Tc) 0,3,8 0; 3;� 0; 6;� 0; 10;�

full space-time processing and reduce dimension processing
with AOA-delay estimates while the number of Walsh sym-
bols for averaging K̂S+I and K̂I was varied from two to ten,
and the input SNR x in Talble 1 of the direct path signal
equal to -20 db.

6. CONCLUSION

Simulation results show that our algorithms can accu-
rately estimate the AOA and delay for each multipath un-
der \near-far" conditions. The AOA information is use-
ful for FDD downlink beamforming and source localization
for emergency service. The pre-eigenanalysis 2D smooth-
ing algorithm o�ers better performance than the post-
eigenanalysis 2D smoothing algorithm. The paired AOA
and delay information may be used to reduce the dimen-
sionality of the space-time 2D RAKE receiver. Our simula-
tion results show that better separation between the value
of the true Walsh symbol decision variable and the other 63
decision variables may be achieved by using the knowledge
of the paired angle-delay estimates, as opposed to that ob-
tained with full dimension space-time processing. This bet-
ter performance results from the faster convergence toward
the optimal weight vector due to the reduced dimensionality
under conditions of limited available symbols where chan-
nel characteristics remain approximately stationary. The
preliminary simulation results presented reveal the perfor-
mance of the joint AOA-delay estimator and the resulting
reduced space-time RAKE receiver to be quite promising.
Future work includes the choice of subarray size employed in
2D smoothing and comparing the performance of the joint
AOA-delay estimator to the CRB(Cramer-Rao Bound).
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Figure 1: The estimates under \near-far" problem scenario
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Figure 2: The estimates under equal input power scenario
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