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ABSTRACT

This work provides conditions on the input sequence that
ensure the exponential asymptotic stability of the inverse of
the forward prediction error filter obtained by means of the
Recursive Weighted Least Squares algorithm. Note that this
filter is in general time varying. Thus this result is a natural
extension to the well-known minimum phase property of for-
ward prediction error filters obtained by the autocorrelation
method.

1. INTRODUCTION

Linear prediction finds application in such fields as speech
modelling, differential pulse code modulation (DPCM),
high-precision analog-to-digital converters and parametric
spectrum estimation. Consider an m-order forward linear
prediction error filter as given by

e(k) = u(k) +

mX
j=1

aj(k)u(k � j); (1)

where u(�) is the input data sequence, e(�) is the prediction
error, and the filter coefficientsfaj(k)g are those minimizing
the Weighted Least Squares (WLS) cost function

kX
i=0

�k�i

2
4u(i) +

mX
j=1

aj(k)u(i� j)

3
5
2

; (2)

where 0 < � � 1 is the forgetting factor.
In many applications (e.g. speech processing, [5]) the

prediction error filter (1) is used to perform data analysis.
The inverse filter, given by

y(k) = v(k)�

mX
j=1

aj(k)y(k � j); (3)
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where v(�) is the input and y(�) the output, is used in data
synthesis and modelling. Therefore, it is of importance
to ensure that this inverse is exponentially asymptotically
stable (e.a.s.) (see section 4 for a definition). In the
non-recursive WLS scheme known as the autocorrelation
method, a time-invariant prediction error filter is obtained
from a finite data register and has the property of being mini-
mum phase [2]. However, in recursive implementations (the
Recursive Weighted Least Squares algorithm [RWLS]), the
input data sequence need not be finite in principle, and the
optimum filter is updated on a sample-by-sample basis [2].
Therefore the inverse system becomes time-varying, render-
ing its stability analysis nontrivial. The main contribution
of this paper is to show that under mild conditions this time
varying inverse filter is e.a.s. Our solution emphasizes the
case where the input u(�) is not perfectly predictable by an
m-order predictor, i. e. there do not exist constants ai for
which e(�) in (1) is identically zero.

Section 2 reviews the RWLS algorithm and the normal
equations that solve the WLS problem. Section 3 gives the
state-space description of the inverse of the forward pre-
diction error filter. Sufficient conditions guaranteeing its
asymptotic stability are given in section 4. Conclusions are
in section 5.

2. RWLS AND THE NORMAL EQUATIONS

The RWLS agorithm uses the information contained in each
new data sample u(k) to obtain the filter coefficients a(k) =
[ a1(k) � � � am(k) ]0 at time k recursively from those
at time k � 1. The algorithm is summarized in Table 1,
where a soft-constrained initialization has been assumed.
This starting procedure is commonly found in practice; it
sets the initial value of the inverse autocorrelation matrix at
P(0) = ��1I, with 0 < � � 1. See [3] for a discussion on
the choice of �. Due to this initial condition, which is used
to avoid a singular autocorrelation matrix, RWLS yields the
coefficient vector a(k) that minimizes the following cost



function [6]:

J(k) := �k�a0a+

kX
i=0

�k�i [u(i) + a0u(j)]
2
; (4)

with u(j) defined as in entry 3 of Table 1.

Table 1: RWLS algorithm for linear prediction.

Initialization:

a(0) = 0; P(0) = ��1I; u(0) = [ u(0) 0 ]0:

1. Coefficient update: a(k) = a(k � 1)

�
P(k � 1)u(k � 1)[u(k) + a(k � 1)0u(k � 1)]

�+ u(k � 1)0P(k � 1)u(k � 1)
:

2. Inverse autocorrelation matrix update:

P(k) = ��1 [I� g(k � 1)u(k � 1)0]P(k � 1):

3. Tap vector: u(k) = [ u(k) � � � u(k �m) ]0.

Let us introduce, for j � 0, the autocorrelation coeffi-
cients

rj(k) :=

kX
i=0

�k�iu(i)u(i� j);

the m�m positive semidefinite autocorrelation matrix

R(k) :=2
6664

r0(k) r1(k) � � � rm�1(k)
r1(k) r0(k � 1) � � � rm�2(k � 1)

...
...

. . .
...

rm�1(k) rm�2(k � 1) � � � r0(k �m+ 1)

3
7775 ;

and the m� 1 autocorrelation vector

r(k) := [ r1(k) r2(k) � � � rm(k) ]0:

The RWLS algorithm provides at every time instant k the
vector a(k) minimizing J(k) as given in (4), which is the
solution of the following normal equations [2]:

Q(k)a(k) = �r(k); (5)

with Q(k) := �k�I+R(k � 1).

3. THE INVERSE SYSTEM

A state-space representation of the inverse prediction error
filter (3) is

x(k + 1) = F(k)x(k) + e1v(k); (6)

y(k) = H(k)0x(k) + v(k); (7)

where the matrices F(k), e1 and H(k) are given by

F(k) :=2
6666664

�a1(k) �a2(k) � � � �am�1(k) �am(k)
1 0 � � � 0 0

0 1
. . . 0 0

...
...

. . .
. . .

...
0 0 � � � 1 0

3
7777775
;

e1 := [ 1 0 0 � � � 0 ]0;

H(k) := [ �a1(k) �a2(k) � � � �am(k) ]0:

In this representation, the state vector simply comprises de-
lays of the system output:

x(k) = [ y(k � 1) � � � y(k �m) ]0:

4. STABILITY ANALYSIS

We are interested in the eas (definition 1) of (6).

Definition 1 The linear time-varying system x(k + 1) =
A(k)x(k) is e.a.s. if there exist 0 < � < 1 and � such that
for all k0 and finite initial condition jjx(k0)jj,

jjx(k)jj < ��k�k0 jjx(k0)jj for all k � k0;

In other words, for zero input state response decays to zero
at a rate faster than �k.

Our approach is to obtain a Lyapunov equation involving
F(k) from which sufficient conditions for stability can be
derived. The cost function (4) can be rewritten as

J(k) = r0(k) + 2a0r(k) + a0[�k�I+Q(k)]a:

Its minimum, J�(k), (obtained when a = a(k) satisfies (5)),
takes the value

J�(k) = r0(k) + a(k)0r(k): (8)

Making use of (8) and of the normal equations (5), direct
verification shows that

Q(k + 1)� F(k)Q(k)F(k)0 =2
6664

J�(k) + ��k+1

��k(�� 1)
. . .

��k(� � 1)

3
7775(9)



If 0 < � < 1, the right-hand side of (9) is not positive
semidefinite and thus (9) is not a Lyapunov equation in the
usual sense. However, it is still useful. Let us define the
dual variables

Q̂(k) := Q(�k+1); F̂(k) := F(�k)0; Ĵ�(k) := J�(�k):

Then (9) reads as

Q̂(k)� F̂(k)0Q̂(k + 1)F̂(k) =

[Ĵ�(k) + ���k+1]e1e
0
1 + ���k(�� 1)D; (10)

with D := diag( 0 1 � � � 1 ). By the duality theorem
[1], the system x(k + 1) = F(k)x(k) is e.a.s. if and only
if the system x̂(k + 1) = F̂(k)x̂(k) is e.a.s.; therefore it
suffices to study the Lyapunov-like equation (10). At this
point, we need the following result:

Lemma 1 Suppose that the pair [Ak; ck] is uniformly de-
tectable and bounded, and that there is a bounded nonneg-
ative definite symmetric matrix sequence Pk satisfying for
all k

A0
kPk+1Ak �Pk = �ckc

0
k + akB;

where ak is scalar sequence such that jakj � ��jkj for
some � > 0, 0 < � < 1; and B is a symmetric nonnegative
definite matrix. Then the system xk+1 = Akxk is e.a.s.

The proof closely resembles that of Theorem 4.2 in [1] (the
extended lemma of Lyapunov), and is given in [4]. The pre-
cise definition of uniform detectability is not needed for the
proof but can be found in [1]. Loosely speaking, a time vary-
ing system is uniformly detectable if state trajectories that
are not observable at the output are exponentially decaying.

Thus, defining v̂(k) := [Ĵ�(k) + ���k+1]
1

2 e1, we see
that this result can be readily applied to the system x̂(k +

1) = F̂(k)x̂(k) (since the matrix sequence F̂(�) satisfies
(10)), provided that:

1. The matrix sequence Q̂(�) is bounded,

2. F̂(�), v̂(�) are bounded, and

3. The pair [F̂(�); v̂(�)] is uniformly detectable.

Note that by the Cauchy-Schwarz inequality, jrj(k)j2 �
r0(k)r0(k � j). Therefore the sequence Q̂(�) is bounded if
and only if r0(�) is bounded. This will hold provided that
0 < � < 1 and u(�) is bounded in magnitude by M :

r0(k) =
kX

i=0

�k�iu2(i) �
M2

1� �
:

Under these conditions, the vector sequence r(�) is bounded
as well; therefore, the weights a(�) obtained as solutions of
(5), and J(�) (in view of (8)), remain also bounded. Thus
conditions 1 and 2 above hold.

We can now state our main result as follows:

Theorem 1 Suppose that 0 < � < 1, the input sequence
u(�) is bounded and there exist an integer S and a constant
� > 0 such that for all k, there exists nk satisfying:

1. nk � k,

2. nk +m� 1 � k + S,

3. J�(nk + i) � � for i = 0; 1; : : :m� 1.

Then the inverse prediction error filter (6) is e.a.s.

The proof is given in the appendix. The conditions 1-
3 of the theorem say that in any time window of size S

it is possible to find m consecutive time instants in which
the forward prediction error variance J�(�) is bounded away
from zero. This is the case if for example J�(k) � c for
some constant c > 0 and for all k.

To understand this result, suppose first that the data se-
quence u(�) is perfectly predictable by an m-order predictor.
Then u(�) must be a linear combination of sinusoids. In that
case the ideal predictor that renders e(k) = 0 for all k, in (1),
has zeros with magnitude 1, i.e. the inverse predictor is not
e.a.s. Hence, indeed one must preclude perfect predictabil-
ity to achieve an e.a.s. inverse predictor. The satisfaction
of conditions of this Theorem in effect is a strong statement
on the lack of perfect predictability. In practice such perfect
predictability is in any case unlikely. There are inevitable
modeling and measurement errors that persistently prevent
the prediction error from becoming zero.

5. CONCLUSIONS

It has been shown that the RWLS algorithm in the forward
linear prediction setting yields a system whose inverse is ex-
ponentially asymptotically stable, under the following con-
ditions: i) the input signal is bounded, ii) the forgetting
factor is strictly between zero and one, and iii) the minimum
of the WLS cost function (the sum of weighted error squares)
is bounded away from zero during m consecutive time in-
stants, m being the predictor order, in any time window of
arbitrary but fixed size.

6. APPENDIX

Proof of theorem 1: It just remains to show that under the
conditions of the theorem, the pair [F̂(�); v̂(�)] is uniformly
detectable. Introduce the following gain sequence:

ĥ(k) :=

�
[Ĵ�(k) + ���k+1]�

1

2 a(�k); if Ĵ�(k) � �;

0; if Ĵ�(k) < �:

Observe that the sequence ĥ(�) is bounded. Thus, with

~F(k) := F̂(k) + ĥ(k)v̂(k)0;



the uniform detectability of [F̂(�); v̂(�)] is equivalent to the
uniform detectability of [~F(�); v̂(�)] [1]. We will show that
the system ~x(k+1) = ~F(k)~x(k) is e.a.s.; this in turn implies
uniform detectability of [~F(�); v̂(�)] [1], thereby proving the
Theorem.

LetZ be them�m shift matrix with ones in the positions
(Z)i;i+1 and zeros elsewhere. It turns out that ~F(k) satisfies

~F(k) =

�
Z; if Ĵ�(k) � �;

F̂(k) = F(�k)0; if Ĵ�(k) < �:

Now let �(k; l) be the state transition matrix for the system
~x(k + 1) = ~F(k)~x(k).

�(k; l) =

�
I; k = l;
~F(k � 1)~F(k � 2) � � � ~F(l); k > l:

Now the hypotheses of theorem 1 guarantee that the time
window [k; k + S] contains at least m consecutive time
instants at which ~F reduces to Z. To see this, we proceed
as follows: Since for any j there exists nj as in theorem 1,
then in particular for j = �(k + S) one has n�(k+S) such
that

n�(k+S) � �(k + S);

n�(k+S) +m� 1 � k;

J�(n�(k+S) + i) � �;

for i = 0,1, . . .m� 1.
Now definen0k = �(n�(k+S)+m�1). Then J�(�n0k�

i) = Ĵ�(n
0
k+ i) � � for i = 0,1, . . .m�1, and accordingly

~F(n0k + i) = Z; i = 0; 1; : : :m� 1:

Also note that n0k � k and k + S � n0k +m� 1. The state
transition matrix satisfies then

�(n0k + i; k) = ~F(n0k + i� 1) � � � ~F(n0k)�(n
0
k ; k)

= Zi�(n0k; k); i = 0; 1; : : :m

(with the convention Z0 = I). Since Zm = 0, it turns out
that �(n; k) = 0 for all n � k + S:

�(n; k) = �(n; n0k +m)�(n0k +m; k)

= �(n; n0k +m)Zm�(n0k; k)

= 0:

Therefore for all n � k,

~x(n) =

�(n; k)~x(k) =

�
0; n � k + S;
~F(n� 1) � � � ~F(k)~x(k); n < k + S:

Taking norms,

jj~x(n)jj �

�
0 if n � k + S;

jj~x(k)jj if n < k + S;

with  existing because ~F(�) is bounded. Thus the system
~x(k + 1) = ~F(k)~x(k) is e.a.s., and therefore [~F(k); v̂(k)]
is uniformly detectable, which concludes our proof.
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