
ABSTRACT

Computationally efficient speech extraction algorithms have
significant potential economic benefit, by automating an extremely
tedious manual process. Previously, algorithms which discriminate
between speech and one specific other signal type have been devel-
oped, and often fail when the specific non-speech signal is replaced
by a different signal type. Moreover, several such signal specific
discriminators have been combined in order to tackle the general
speech vs. non-speech discrimination problem, with predictable
negative results. When the number of disriminating features is
large, compression methods such as Principal Components have
been applied to reduce dimension, even though information may be
lost in the process. In this paper, graphical tools are applied to deter-
mine a set of features which produce excellent speech vs. non-
speech clustering. This cluster structure provides the basis for a
general speech vs. non-speech discriminator, which significantly
outperforms the TALKATIVE speech extraction algorithm.

1. INTRODUCTION

In this paper, recent work at the Department of Defense (DOD)
on speech activity detection (SAD) is presented. Those who have
attempted to manually locate the boundaries of speech intervals in
heterogeneous acoustic signals will attest to the need for a proce-
dure which automates this very tedious and time consuming task.

While significant work has been done on this problem, most
efforts have attempted to extract speech segments from data con-
taining one other specific signal type. Unfortunately, when such an
algorithm is applied to separate speech from a different specific
non-speech signal, results are generally poor. Thus, while the vari-
ance of the delta spectrum magnitude is an excellent discriminator
of speech vs. music [1], it is not very effective for separating speech
from certain modem signals or tones. Blind combination of  such
specific discriminators in order to develop a general speech vs. non-
speech detector only compounds the problem. Moreover, when the
number of discriminating features is large, dimension reduction is
typically achieved using Principal Components [2], [3] , apparently
with the  hope that compressing  the data according to variance con-
siderations would unravel the confusion.

It is very easy to see that this approach can lead to disastrous
consequences. Consider the hypothetical situation where a two
dimensional data set defines two elongated non-overlapping ellip-
soidal clusters, with parallel major axes. Principal Components des-
ignates the direction parallel to these major axes as most significant,
since this direction contains most of the total variance of the data.
Unfortunately, projecting the data along the major axes will not sep-
arate the groups, which overlap along this direction. The graphical
method described below has no difficulty in discriminating between
such groups.

The method presented in this paper for constructing speech
activity detectors utilizes visual displays to select a small set of fea-
tures which produce good speech vs. non-speech clusters. This clus-
ter structure may be learned by a standard classifier, which may be
applied to separate speech and non-speech. An example detector is
constructed, which significantly outperforms the Canadian speech
extraction algorithm, TALKATIVE [4].

2. EARLIER SAD ALGORITHMS

During recent years, several speech activity detectors have
been developed and utilized with varying degrees of success.

One of the earliest was the Readability algorithm, which
essentially performs an autocorrelation of  an input signal segment,
and classifies the segment as speech if and only if the peak of the
autocorrelation is within the pitch range of speech (60-400 Hz).
Unfortunately, the algorithm is easily fooled by certain signalling
tones, impulsive noise, muzak, and various modems. Moreover, the
algorithm is sensitive to channel gain.

An improvement over the Readability algorithm is the Nelson-
Pencak algorithm [5], which sorts the power spectrum  of the input
signal segment, and computes the ratio of high-powered compo-
nents (assumed to be signal) to low-powered components (assumed
to be noise).  The speech/non-speech decision is made by threshold-
ing the resulting SNR. Pre-whitening  and signal variance are used
in secondary tests. The NP algorithm generally outperforms Read-
ability and is insensitive to channel gain, although certain signals
such as modulated tones and muzak produce high false alarm rates.

The TALKATIVE algorithm performed among the best in a
recent evaluation of speech activity detectors conducted by DOD
researchers [6]. This algorithm assumes that speech is non-station-
ary, and that this non-stationarity is reflected in vectors of cepstral
coefficients. The Euclidean distances between nearby pairs of ceps-
tral vectors are averaged and thresholded to give a speech/non-
speech decision. TALKATIVE has difficulty with muzak and spuri-
ous tones, and degrades ungracefully in mild white noise condi-
tions.

3. NEW APPROACH

The method proposed in this paper for constructing speech
activity detectors consists of four steps: (1) assemble a pool of can-
didate algorithms which are surmised to have good speech vs. non-
speech discrimination potential; (2) from the candidates selected in
step one, utilize graphical tools such as XGobi [7] to determine a
small number of  features which produce good clustering of speech
vs. non-speech;  (3) apply a classification algorithm based on the
cluster structure learned in step two; (4) apply secondary tests to
remove any remaining non-speech.

4. NEW CANDIDATE ALGORITHMS

Four candidate algorithms were expected to contribute to solv-
ing the speech vs. non-speech discrimination problem. The tests
were: (1) normal spectrum, (2) syllable rate detector,  (3) baud rate
detector, and (4) carrier detector.

The normal spectrum is computed by averaging the DFT of the
time waveform over several ovelapping frames whose union is the
input signal segment.

The syllable rate detector is constructed by applying a low pass
filter (passband around 60 Hz) to the magnitude of the analytic ver-
sion of the signal (i.e., the complex valued signal having the origi-
nal signal in the real part and the Hilbert transform of the original
signal in the imaginary part). The spectrum of the AM envelope of
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the low-passed analytic signal is output. Since the syllable rate of
speech is around 5Hz, one expects to observe a bulge in this spec-
trum near this value for input speech segments.

The baud rate detector determines the baud rate of a modem or
the fundametal pitch frequency of speech as the peak in the cross
power spectrum (the ouput of the algorithm, see [8] for details) of
the magnitude of the analytic signal. Since most modems have a
baud rate above 1000 Hz, while the pitch range for speech is
between 60 and 400Hz, it was anticipated that this test would do
most of the work in separating speech from bauded signals.

The carrier detector exploits the weak fourth order symmetry
of most bauded signals by computing the crosspower spectrum of
the fourth power of the magnitude of the anayltic signal.  A spectral
bulge is anticipated at four times the carrier frequency.

Clearly, many other prospective algorithms may be proposed,
but good results were obtained starting with only these algorithms.

Each of the four tests takes a signal segment as input and pro-
duces a Fourier spectrum as ouput. The corresponding amplitude
spectrum may be normalized to produce a probability vector (i.e. a
real vector with non-negative components which sum to one). Fea-
tures can be extracted from these probability vectors, such as statis-
tical moments and magnitude ratios. The normalization also ensures
that the tests are invariant to channel dependent gains.

For each test, we investigated three features (mean, variance
and ratio of largest to average component of the probability vector)
for several different signal types, computed over one second data
windows. This window length is a compromise between the time
thought necessary to adequately resolve the syllable rate for speech
(around 5 cycles per second) and the requirement that the algorithm
locate boundaries between speech and non-speech fairly accurately.

A preliminary analysis using histograms showed that the nor-
mal spectrum and the carrier detector had considerable difficulty
separating speech from non-speech; consequently these candidate
algorithms were disgarded. The baud rate detector and the syllable
rate detector appeared to have the best potential for discrimination
between speech and non-speech signals.

Fig 1. displays the the AM envelopes of a speech signal and a
modem signal, while Fig 2. shows the amplitude spectra obtained in
applying the syllable rate detector to these envelopes. The large
spike near 5 Hz in Fig. 2 (top) represents the syllable rate.

5. FEATURE SELECTION

Starting with the six features from the remaining two candidate
algorithms, we exhaustively examined the cluster structure pro-
duced by various combinations of two and three features, using the
Xgobi graphics package.  It was surprising to learn that the three
features from the syllable rate detector alone produced the best sep-
aration of speech vs. non-speech. Fig. 3 (top) shows the clusters
obtained with the three components of the baud rate detector, while
Fig. 3 (bottom) illustrates the superior clustering found with the syl-
lable rate features. Combination of various syllable rate and baud
rate features scored no better than syllable rate features alone.

The fact that the AM envelope from the syllable rate detector is
an excellent speech vs. non-speech discriminator is easy to under-
stand. It is the distinctive oscillatory pattern of the envelope between
relatively large amplitudes and zero which alerts one to the possible
presence of speech when humans view a speech waveform. By con-
trast, the envelope for the bauded signal in Fig. 1 is bounded away
from zero, and the oscillations are not as extreme as those in the
speech envelope. Tones and several other non-speech signals also
have envelopes which are bounded away from 0, with little oscilla-
tion. Indeed, we will further exploit the shape of the envelope to
obtain improved speech vs. non-speech discrimination on .5 second
windows, in Section 8.

6. QDA CLASSIFICATION ALGORITHM

Based on the shape of the clusters obtained with Xgobi, it was
decided to apply Quadratic Discriminant Analysis [9] to learn the

cluster structure and to classify new data. For different data sets,
other classification methods such as CART [10] might work better,
depending on the modality of the clusters. We recall that in QDA,
the probability of an observation vectorx belonging to classGi is

, (1)

where

(2)
is the (squared) Mahalanobis distance betweenx and ith traininig
class and

µi is the mean vector of the ith training class;
Si is the covariance matrix of the ith training class;
Gi is the ith class;
pi is the prior probability of belonging to the ith class;
|Si| is the determinant ofSi.

An observation data vectorx is assigned to the class which has
the largest  value.

7. EXPERIMENTS

A data base of homogeneous one-second long time waveforms
containing representatives from eleven  different  signal types (spon-
taneous speech,  recorded speech, music, speech noise, bauded sig-
nals, silence, clicks, tones, multi-tones, white noise, unusual noise)
was constructed. Spontaneous speech and recorded speech formed
one class, while the other nine signals collectively formed the non-
speech category. The data base was randomly split into training and
testing sets and QDA classification rates were computed for various
combinations of two and three features selected from among the six
candidate features. This experiment confirmed the heuristic result of
Section 5 that the best separation ocurred when the three syllable
rate features alone were used.

We desired to publish a speech/non-speech decision every .1
second as we processed a data file from beginning to end. To accom-
plish this, we marched our one second decision window through the
file, sliding it by .1 second increments. In this way a fixed .1 second
data segment would be part of ten different speech/non-speech deci-
sions. A final decision for the fixed .1 second window was obtained
by polling these ten decisions.

Classification rates obtained with the new algorithm (which we
refer to as SRSAD) were compared with those obtained with
TALKATIVE for several hand marked heterogenous acoustic files.
The initial results indicated no clear winner. It was observed that
most of the files where TALKATIVE outperformed SRSAD con-
tained many short (a second or less) speech segments separated by
short non-speech segments. Since TALKATIVE’s decision window
was .32 seconds vs. 1.0 second for SRSAD, we conjectured TALK-
ATIVE was better able to locate speech/non-speech boundaries.

8. IMPROVEMENTS TO THE SRSAD

A shorter decision window for SRSAD seemed desirable for
resolving boundaries, yet longer decision windows are better for
determining the syllable rate. Indeed, experiments showed that
shortening the decision window weakened the discrimination power
of the algorithm.

Fortunately, a modification of the algorithm was discovered
which permitted the decision window to be shortened, while simul-
taneously improving classification rates. Note that the shape of the
graphs of the amplitude spectra in Fig. 2 are fairly similar, which
makes discriminating between speech and bauded signals difficult
for SRSAD. Note also that the bottom curve in Fig 2 resembles the
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graph of a scaled magnitudesinc function, |sin(x)/x|. This is consis-
tent with the ragged step function-like shape of the modem envelope
in Fig. 1 (recall that the Fourier transform of a step function is a
scaledsinc function). By subtracting the means of the (zero-padded)
AM envelopes before taking the DFT, the spectral amplitude graphs
in Fig. 4 for the speech and modem signals were obtained. The
amplitude spectrum of the modem envelope no longer resembles a
sincfunction, while the amplitude spectrum of the speech signal has
changed only slightly. A similar effect was observed for several
other non-speech signals. When SRSAD was modified to incorpo-
rate mean subtraction, it was possible to shorten the decision win-
dow length to .5 seconds and simultaneously improve classification
rates.  Indeed, false alarm rates dropped by 6-15% on several files.

9. EVALUATION OF THE SRSAD

To determine how well SRSAD locates boundaries between
speech and non-speech intervals, files consisting of alternating seg-
ments of speech and either tones or modems were synthetically con-
structed, using data not seen in training. By varying decision
thresholds in TALKATIVE and speech priors in SRSAD, perfor-
mance was plotted as ROC curves, with false alarm rates on the hor-
izontal axis and detection rates on the vertical axis. Fig. 5 shows
ROC curves for the SRSAD and TALKATIVE when the alternating
segments were .8 seconds long. SRSAD performs about 4-5% better
in detection rate at the same false alarm rate. Similar improvements
were observed when the segment length was varied between .5 and
2.0 seconds.

The algorithms were also compared when uniformly distrib-
uted white noise was added to telephone quality speech. Both algo-
rithms were run on a file consisting of several 2 to 3-second
sentences uttered by various speakers, which were separated by 1.5-
second intervals of silence. The ROC curves for this clean file were
nearly identical for both algorithms. However, at 3dB SNR SRSAD
very significantly outperformed TALKATIVE, as seen in Fig. 6.  In
fact, there was very little degradation in SRSAD performance even
at 0dB SNR.

Finally, SRSAD and TALKATIVE were compared on 128 nat-
urally occuring signal files containing speech and non-speech,
which were obtained from diverse sources not seen in training
SRSAD. These files were concatenated, and SRSAD and TALK-
ATIVE were compared on this merged file. The resulting (trans-
posed) ROC curve in Fig. 7 shows that TALKATIVE’s false alarm
rate is significantly higher than SRSAD’s, at the same detection rate.
This margin increases from about 2% at 82% speech detection rate
to about 18% at 96% speech detection rate.

It should be emphasized that these results hold for the concate-
nated file, and therefore may serve as predictors of average perfor-
mance only. Indeed, TALKATIVE outperformed SRSAD on a few
individual files.

10. SECONDARY TESTING

While SRSAD very significantly outperforms TALKATIVE on
average, certain signals are troublesome for both algorithms. Impul-
sive noise, very short tones and muzak often produce high false
alarm rates. Although impulsive noise and short tones have enve-
lopes which resemble step functions, mean subtraction does not sig-
nificantly alter thesinc function shape of the amplitude spectra in
these cases. This is because most of the windowed signal is zero (or
nearly zero) valued, so that the mean is frequently negligible. It is
anticipated that a pre-whitening filter will be effective in removing
these impulsive components from the signal envelope.

Muzak is a more difficult problem. The shapes of the AM enve-
lope of muzak and speech are very similar, and a secondary test is
required to separate these two signal types.  A solution that works
well in low noise environments is based on the observation that the
muzak envelopes rarely cross the horizontal axis, whereas speech
envelopes often do. An empirically determined threshold of approx-
imately 25% of the envelope mean was set, and the number of times

the envelope crossed this threshold (excluding endpoints) was tal-
lied. A signal segment was classified as non-speech if it never
crossed the threshold; otherwise it was sent to the QDA classifier.
The overall classification rates obtained in low noise environments
were excellent, from just over 90% for the worst language to over
95% for English. Moreover, incorporating this test into SRSAD did
not compromise classification rates obtained previously.

11. SUMMARY AND CONCLUSIONS

Starting with a suite of candidate discriminators, we were
guided by visual display to select a few channel independent fea-
tures which produced exellent speech vs. non-speech clustering.
The best features were the mean, variance and magnitude ratio from
the syllable rate detector.  This  heuristic conclusion was verified by
performing a search over various subsets of candidate features,
using QDA. A preliminary comparison of the new SRSAD algo-
rithm with TALKATIVE revealed no clear winner. However, after
modifying SRSAD by subtracting the mean of the AM envelope
before transforming, classification rates improved substantially. Fur-
thermore, it was possible to shorten the decision window from 1.0 to
.5 seconds, which improved SRSAD’s capacity to resolve speech/
non-speech boundaries. This modified SRSAD algorithm is far
superior than TALKATIVE for extracting speech segments in white
noise conditions. Finally, SRSAD very significantly outperformed
TALKATIVE, on average, when the algorithms were compared on a
large number heterogenous acoustic signal files not seen in training.

While the improved performance of SRSAD over the TALK-
ATIVE is significant, the importance of the technique should be
emphasized. It has been demonstrated that visual displays may be
employed to determine features which produce excellent clustering
of speech vs. non-speech, and the cluster structure may be used as a
basis for successful SAD algorithms. Use of graphical displays also
avoids possible information loss which may result upon blind appli-
cation of compression methods such as Principal Components.
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Figure 1. AM envelopes of a speech waveform (top) and a
modem waveform.

Figure 2. Amplitude Fourier spectra of the AM envelopes of a
speech signal(top) and a modem signal.

Figure 3. Xgobi scatter plots of speech and non-speech using
three features derived from the baud rate detector (top) and from
the syllable rate detector (non-speech in white).

Fig. 7. Comparison of the SRSAD and TALKATIVE on a large
number of heterogeonous data files (transposed ROC curves).

Figure 6. ROC curves of SRSAD and TALKATIVE for noisy (3
dB) speech segments separated by silence.

Figure 5. ROC curves of SRSAD and TALKATIVE with alter-
nating .8 second segments of speech and non-speech.

Figure 4. Amplitude Fourier spectra of the AM envelopes with
means removed of a speech signal (top) and a modem signal.
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