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ABSTRACT

In order to gain insights on equalization design in the
wireless mobile communication systems, we compare the
performance of several multi-channel MLSE equalizers
which adaptively track the fast-fading channels. Com-
monly-used channel tracking schemes, Decision-Directed
Recursive Least Square (DD/RLS), Per-Survivor Process-
ing Recursive Least Square (PSP/RLS) and other re-
duced-complexity MLSE algorithms are considered. Sim-
ulation results that illustrate the performance of the equal-
izers working with various channel tracking schemes are pre-
sented.

1. INTRODUCTION

In the mobile communication systems, radio channels vary
rapidly with time because of the high mobility of the sub-
scribers. Signals from di�erent paths experience di�erent
speeds of phase rotation caused by the Doppler spread. The
combined e�ects of these phase rotations result in rapid uc-
tuation of the radio channels. We assume a TDMA (Time
Division Multiple Access) system, e.g., GSM [1], and we fo-
cus on the algorithms of the optimal MLSE equalization. In
the fast-fading channels, channels could be quite di�erent at
both ends of a TDMA data burst. Therefore, joint channel-
data estimation (JCDE) is required. The most straight-
forward way to track the channel is decision-directed (DD).
The decision-directed least mean square (DD/LMS) chan-
nel tracking algorithm is proposed in [2]. If the radio chan-
nels vary very fast, tentative decision is required to keep
up with the channel variation. However, the MLSE equal-
izer requires a long decision delay to make sure the trellis
paths converge. Before trellis paths converge, the tenta-
tive decision in the DD may introduce a severe error prop-
agation problem because of the incorrect decision. In an
extreme case, the tentative decisions are retrieved with no
delay from the survival trellis path with the minimum node
metric, and used to update the channel. This algorithm is
called the minimum-survivor method in [3].

In addition to the DD, the per-survivor processing (PSP)
channel tracking schemes have attracted a lot of attention
in recent years, e.g., [4]. In the PSP, channels are updated
independently for each survival trellis path and the decision
feedback is retrieved from each individual trellis path with
no decision feedback delay. The MLSE equalizer is consid-
ered more complicated than the MMSE (minimum mean

square estimation) or the ZF (zero-forcing) linear equaliz-
ers. The PSP makes the MLSE even more complicated.
Several ways to reduce the complexity have been proposed
in the literature. One is to reduce the complexity of the
MLSE itself by reducing the number of states or the number
of trellis paths, and then use the PSP for channel tracking.
The DDFSE [6], the RSSE [7] and the (M,L) algorithms [8]
have been proposed to reduce the number of states. The
M-algorithm [9], the T-algorithm [10] and the (M,L) algo-
rithms [8] can be used to constrain the number of survival
paths. The algorithms using the PSP together with the var-
ious complexity-reduced MLSEs mentioned above to track
the fast-fading channels are discussed in [5, 11]. The other
way to reduce the PSP/MLSE complexity is to constrain
the number of trellis paths where channel tracking is ap-
plied [12], and the PSP is then applied to only these part
of the survival paths to update the channel estimates.
This paper is organized as follows. In section 2, we de-

scribe a fast-fading specular multi-path channel model. In
section 3, we describe several commonly-used adaptive algo-
rithms to be used in a multiple-antenna scenario. In section
4, we compare the BER simulation results of several algo-
rithms described in section 3.

2. FAST-FADING CHANNEL MODEL

Let us �rst describe the specular multi-path channel model.
The radio channel in a wireless communication system is
often characterized by a multi-path propagation model. In
large cells with high base station antenna platforms, the
propagation environment is aptly modeled by a few domi-
nant specular paths, typically 2 to 6. In such a case, the
baseband signals received at the antenna array can be ex-
pressed as follows

x(t) =

pX
i=1

a(�i)�i(t)~s(t� �i) + n(t); (1)

where x(t) is the vector of the received baseband signals;
n(t) is the additive Gaussian noise; a(�i) is the steering
vector of a signal arriving from direction �i; �i is the time-
varying path amplitude which is a complex Gaussian ran-
dom process including both the propagation loss and the
signal fading caused by the Doppler spread; ~s is the trans-
mitted complex baseband signal; �i is the propagation delay
of the ith path; and p is the total number of paths present
in the system.



In a linear system, the transmitted signal ~s can be rep-
resented as the convolution of the data symbols and the
pulse-shaping function. Therefore, after sampling, we can
express the received signal ~x as

~xm�1(k1) = Hm�rl(k1)~srl�1(k1) + ~n (2)

= Am�pBp�p(k1)Gp�rl~srl�1(k1) + ~n(k1);(3)

where the subscript denotes the dimension of each matrix
or vector; k1 is the time index; m is the number of antennas;
l is the maximum length of the channel impulse response
divided by the symbol period T ; r is the oversampling fac-
tor; A = [a(�1) a(�2) ::: a(�p)]; B(k1) = diagf�(k1)g with
�(k1) = [�1(k1); �2(k1) � � � �p(k1)]

T and �i(k1) being the
complex fading amplitudes of the ith path at the kth1 sample;
Gij = g(t0+

j�1
r
T��i) with g(:) denoting the pulse-shaping

function; and ~n is the additive Gaussian noise. Thus, we
decompose the FIR equivalent channel H(k1) into H(k1) =
AB(k1)G. The column data vector ~s(k1) is the (k1 � hr+
1)th column of a Toeplitz matrix S(h). In S(h), we have
[sh; 01�(r�1); sh�1; 01�(r�1); � � � sh�l+1; 01�(r�1)]

T as its
�rst column and [sh; 01�(r�1)] as its �rst row, where sh is
the transmitted data symbols, and h denotes the maximum
possible integer which is not greater than k1

r
. The possi-

ble values of the data symbol sh depend on the modulation
scheme.

In order to take into account the time correlation of each
of the complex path amplitudes, it is more convenient to
consider the received data within a time period instead of
a single snapshot. Thus after stacking, (3) can be rewritten
as

vecfXgmrn�1 = Hmrn�(m+n)r�1s(m+n)r�1�1 + vecfNg;
(4)

where Xm�rn = [~x(k); ~x(k + 1); :::; ~x(k + rn � 1)],
Nm�rn = [~n(k); ~n(k + 1); :::; ~n(k + rn � 1)], sr(n+l)�1�1 =

[01�(r�1); sh+n�1; 01�(r�1); � � � ; sh�l+1; 01�(r�1)]
T ,

Hmrn�r(n+l)�1 =

2
6664
0 H(k)

H(k + 1)
H(k + 2)

. .
.

H(k + rn� 1) 0

3
7775 ;

(5)
and Hm�rl(k) = Am�pBp�p(k)Gp�rl.

3. THE ALGORITHMS UNDER
CONSIDERATION

In a TDMA system, data is transmitted in bursts. A train-
ing sequence st is embedded in each burst, and data bits
are on both sides of the training sequence. The training
sequence st is usually used to facilitate identi�cation of the
wireless channel. Since the channel varies with time, the
channel estimate during the training period turns inaccu-
rate toward either end of the data burst in the MLSE equal-
izer. Therefore, updating the channel estimate is required
for the fast-fading channels.

We summarize the various algorithms considered in this
paper as follows:

1. Estimate the FIR channelH during the training period
by solving a system of linear equations

Fvec(ĤSt) = Fvec(Xt); (6)

where St is a known Toeplitz data matrix S con-
sisting of the training symbols; Xt is the the re-
ceived signals X during the training period; F =
diag(�ltImr�mr ; :::; �Imr�mr ; Imr�mr) if tracking for-
ward; F = diag(Imr�mr ; �Imr�mr; :::; �

ltImr�mr) if
tracking backward; � is the forgetting factor of the RLS
algorithm; and lt is the length of the training sequence.
The recursive way to solve (6) is as follows: Initialize
the FIR channel estimate of the ith antennaHi and the
inverse of the covariance matrix of the ith antenna Pi

by setting Ĥi(0) = 01�rl and Pi(0) = Irl�rl, respec-
tively. Then update the Kalman gain vector gi and the
matrix Pi recursively by

gi(h) = ��1Pi(h)St(h)

(Ir�r + �
�1S�t (h)P

i(h)St(h))
�1

;(7)

e(h) = Xi
t(h)� Ĥi(h)St(h); (8)

Ĥi(h+ 1) = Ĥi(h) + e(h)(gi(h))�; (9)

Pi(h+ 1) = �
�1(Irl�rl � gi(h)Sit(h))P

i(h);(10)

where e is the error signal; Xi
t and Ĥi, respec-

tively, represent the ith row of Xt and Ĥ; Xt(h) =
[~xt(rh); ~xt(rh + 1); :::; ~xt(rh + r � 1)]; St(h) =
[~st(rh);~st(rh + 1); :::;~st(rh + r � 1)]; and ~xt(k1) and
~st(k1) are de�ned as ~x(k1) and ~s(k1), respectively, dur-
ing the training period.

2. Start to update the channel estimates Ĥ through each
trellis path of the Viterbi algorithm by using the RLS
algorithm, when the next transmitted data symbol
sh�hd is outside the training period and is unknown to
the receiver, where hd is the feedback delay. At epoch
h, the extra m linear constrains in the RLS algorithm
can be written as

ĤbS�b(h� hd) = X(h� hd); (11)

where Ĥb is the FIR channel update of the bth branch;
and S�b is the data matrix consisting of the feedback
data symbols used for the bth branch. If the data se-
quence associated with \the survival path including the
�bth branch" can be written as (s�b;h; s�b;h�1; :::), then
S�b(h � hd) is a Toeplitz matrix with
[s�b;h�hd ; 01�(r�1); s�b;h�hd�1; 01�(r�1); � � � s�b;h�hd�l+1;

01�(r�1)]
T as its �rst column and [s�b;h�hd ; 01�(r�1)]

as its �rst row. We update Ĥb as (7) - (10) do, except
that St(h) is replaced by S�b(h � hd). If �b = bmin(h),
the algorithm is DD and there is only one RLS running
to update the channel estimate, where bmin(h) is the
branch connected to the node with the minimum node
metric at epoch h, �bmin

(h). If �b = b, the algorithm is
PSP and there are nd RLSs running at the same time
along each survival path, where nd � 1 is the number
of the survival paths. If the decision feedback delay
hd increases, the survival trellis paths converge to the
common trellis roots; thus nd decreases.



3. Reconstruct the received signalXb(h) of the b
th branch

by Xb(h) = Ĥb(h� hd)Sb(h).

4. Calculate the incremental metrics for the bth branch
�b(h) = jjX(h) � Xb(h)jj

2
F , where jj:jjF denotes the

Frobenius norm.

5. Calculate the node metric for the node connected to the
bth branch �b(h) = �b(h) + �b(h� 1), where �b(h� 1)
is the node metric of the node on the other side of the
bth branch just before epoch h.

6. Assuming each node is connected to ni branches, pick
one branch with the minimum node metric out of ni
branches

7. Repeat Steps 2-6 for all the branches b in epoch h.

8. Make decision of sh�hf by choosing the trellis path
with the minimum node metric �b(h) among all the
nodes at epoch h. The decision delay hf is usually no
less than 5l. If the data sequence of the chosen survival
trellis path can be expressed as (ŝh; ŝh�1; :::), then the
�nal decision of the (h� hf )

th symbol is ŝh�hf .

9. Repeat Steps 2-8 for the next symbol forward starting
from the training period until the end of the burst is
reached.

10. Repeat Steps 1-8, but backward, starting from the
training period until the beginning of the burst is
reached.

11. Return to Step 1 for the next burst.

If �b(h) = bmin(h), and hd � 5l, the algorithm is DD.
If �b(h) = bmin(h), and hd = 1, the algorithm is called
the minimum-survivor channel tracking method in [3]. If
�b(h) = bmin(h), and 1 < hd < 5l, the algorithm is DD with
tentative decision. If �b(h) = b(h), and hd = 1, the algorithm
is PSP. If hd = 1 and �b(h) is de�ned as

�b(h) =

�
b(h) if �b(h� 1) is among np smallest metrics
bmin(h) otherwise;

(12)
where np is a �xed number chosen to be less than the num-
ber of nodes, this algorithm is proposed in [12] as a method
between the PSP and the DD with tentative decision. We
call this algorithm the Raheli's method in the rest of this pa-
per. The DDFSE [6] can also be used to simplify MLSE, and
the PSP tracking is then applied to thus simpli�ed MLSE.

4. SIMULATION RESULTS

Simulations were conducted to compare the performance
of the adaptive MLSE algorithms. For the MLSE al-
gorithms, we tested several channel tracking schemes,
including DD/RLS, DD/RLS with tentative decision,
DD/RLS with the minimum-survivor method, PSP/RLS,
DDFSE/PSP/RLS, the Raheli's method/RLS and then
compared their simulation results with those of the train-
and-freeze approach. In the simulations, the GMSK mod-
ulation scheme used in the GSM [1] is tested. We approx-
imated the GMSK as a linear modulation scheme, and we
tried the simulation on a 3-tap channel model which is made
similar to the Typical Urban(TU) channel models in [1].
The path delays are 0, 0:4T and 1:3T , respectively, where

T is the symbol period. The path DOAs are �30�, 0�, and
30�, respectively; and the path weights are 0dB, �6dB, and
�10dB, respectively. The normalized Doppler spread are
assumed to be fDT = 6� 10�3. We used a uniform linear
array with 4 isotropic elements, spaced half a wavelength
apart. In the Viterbi equalizer, we used 16 states.

The BER performances of the MLSE algorithms with var-
ious channel tracking schemes are shown in Figs. 1. Fig. 2
compares the BER performance of the DD/RLS with var-
ious decision feedback delays. Finally, the performances
of the DDFSE/PSP/RLS and the Raheli's method/RLS
are presented in Figs. 3 and 4, respectively. The
DDFSE/PSP/RLS approach �rst uses DDFSE to simplify
the MLSE by reducing the number of states in the Viterbi
algorithm, then applies the PSP/RLS channel tracking.
The Raheli's method/RLS is described in Section 3.1.

According to Fig. 1, as expected, the PSP/RLS per-
forms better than the DD/RLS, and both the PSP/RLS
and the DD/RLS perform better than the train-and-freeze
approach. Since channels are fast time-varying, severe chan-
nel mismatches cause the BER of almost all the algorithms
to encounter error ooring at high SNR. Better performance
is associated with higher complexity of the algorithms. The
high complexity of the PSP makes it impractical to im-
plement at the current DSP processing speed. Decision-
directed tracking is simple but it may su�er two problems:
1) The decision feedback delay in the fast-fading channel
will cause channel mismatch. Therefore, we have to reduce
decision feedback delay by making tentative decision. 2)
The DD with tentative decision will cause error propaga-
tion if the decision feedback delay is too short. This is
because we try to make decision of a speci�c symbol before
most energy of that symbol is received, and thus the tenta-
tive decision is likely to be incorrect. There is an optimal
decision feedback delay working to minimize the channel
estimation lag and the error propagation at the same time.
Fig. 2 is meant to search for this optimal decision delay.
In the scenario we set up, we found both the case with
long decision feedback delay and the case with no decision
feedback delay (the minimum-survivor method) to perform
much worse than the PSP/RLS. As shown in Fig. 2, the
optimal decision feedback delay is two symbols.

Other algorithms with higher complexity than the
DD/RLS are also possible for simplifying the PSP/RLS.
Fig. 3 shows that the DDFSE/PSP/RLS can perform as
well as the PSP/RLS if the number of states is reduced by
half, and that yet its performance starts to degrade dramat-
ically if the complexity is further reduced. Similarly, Fig. 4
shows that the Raheli's method/RLS can perform as well
as the PSP/RLS if the channel-updating is only restricted
to one half or one quarter of the survival paths, and that
yet its performance starts to degrade if we further reduce
the number of survival paths employing channel updating.
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Figure 2. The BER performance of the DD/RLS
with various tentative delays.
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Figure 3. The BER performance of the
DDFSE/PSP/RLS with various numbers of states.
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Figure 4. The BER performance of the Ra-
heli's method/RLS with various numbers of survival
paths.


