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ABSTRACT

A family of adaptive filtering algorithms for processing sig-
nals which have energy concentrated in a relatively small number
of component subspaces in the spectral domain is introduced. The
approach is based on transform domain signal decomposition and
linear least squares filtering of the selected subset of transform do-
main signal components. The derivation is based on the linear
least squares adaptive filtering framework introduced in our previ-
ous work [1]. Fast convergence and computational efficiency are
the main characteristics of the resulting algorithms. The method is
applied to the problem of adaptive line enhancement comb filter-
ing and DFT is used as a transform method. It is also shown that
the resulting adaptive structure is capable of handling the case of
non-coinciding frequencies. The performance of the algorithm is
evaluated through a series of simulation experiments.

1. INTRODUCTION

In many signal processing applications the signal characteristics
vary in the spectral domain. Using a spectral decomposition of
a signal and matching the characteristics of an adaptive signal
processing system to the characteristics of the signal in spectral
subspaces makes it possible to optimize the usage of the computa-
tional power as well as increase the overall performance and effi-
ciency of the system. The areas of transform domain, subband and
subspace signal processing have recently been in the focus of the
research interest [2, 3, 4]. Different techniques have been devel-
oped to increase the energy compaction. Spectral decomposition is
usually combined with either simple and robust LMS or more so-
phisticated but usually higher performance RLS methods to obtain
efficient adaptive filtering algorithms [5].

In this work we follow the approach of combining the energy
compaction property of spectral decomposition with high perfor-
mance of RLS methods to obtain an adaptive algorithm suitable
for processing a class of signals which have energy concentrated
in a relatively small number of component subspaces in the spec-
tral domain. We refer to our approach as the spectral line recursive
least squares adaptive filtering algorithm (SL RLS). We derive it
by using the linear least squares adaptive filtering framework in-
troduced in [1]. The original framework combines spectral de-
composition with linear least squares adaptive filtering techniques.
Spectral decomposition may be implemented by different types of
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transformations. Transforms which may be used include data de-
pendent transforms (e.g. Singular Value Decomposition -SVD or
Karhunen-Loeve Transform - KLT) and data independent trans-
forms (e.g. Discrete Fourier Transform - DFT or Discrete Cosine
Transform - DCT). By projecting the data vectors into a set of
component spectral subspaces we can extract components that be-
long to a specified component subspaces or composite subspace.
This approach gives us control of the selection of the portion of
data vectors used in the RLS adaptive filter coefficients’ adaptation
process in both the original data domain and the spectral domain.
The linear RLS adaptive filtering problem can be implemented in
overdetermined, exactly determined or underdetermined form, de-
pending on the rank of the problem which can be chosen by appro-
priate time-domain window boundary selection. Algorithms can
be implemented in either a sample-by-sample or block versions.

This paper is organized as follows. In section 2 we define the
generalized form of the algorithm. We also focus on a computa-
tionally efficient low rank - low projection order form of the algo-
rithm and use DFT as an example of transformation. In the third
section we describe the application of the proposed algorithm to an
adaptive line enhancer/comb filter. In the fourth section we present
typical examples of simulation results.

2. DEFINITION AND DERIVATION OF THE SPECTRAL
LINE RLS ALGORITHM

Consider the linear least squares adaptive filtering problem. Let
X(k) be anN �M data matrix

X(k) = [x1(k) x2(k) ::: xM (k)] (1)

wherexi(k); i = 1; 2; ::;M areN � 1 input data vectors at time
k, andy(k) is the correspondingM � 1 reference signal sample
vector

y
T (k) = [y(k) y(k � 1) ::: y(k �M + 1)]: (2)

TheM � 1 adaptive filtering residual error vector at timek can be
defined as

e(k) = y(k)�X
H(k)h(k) (3)

whereh(k) is anN � 1 adaptive filter coefficient vector. The
adaptive coefficient vector increment�h(k+1) which is optimal
in the linear least squares sense satisfies the following equation [1]:

X
H(k)�h(k+ 1) = e(k): (4)

For1 <M < N the system (4) represents an underdetermined LS
problem and the solution leads to the affine projection algorithm



(APA) [1]. ForM > N the system (4) is overdetermined and the
solution leads to sliding window covariance (SWC) RLS algorithm
[1]. Instead of solving the LS problem directly in this form we can
modify it by introducing the product of a unitary matrixQ and its
hermitian transposeQH in (4). By doing so we obtain a transform
domain decomposition based linear least squares adaptive filtering
framework in two forms [1]:

(QQH )(XH(k)�h(k+ 1) = e(k) (5)

where the size of the transform matrix isM , and

X
H (QQH)�h(k+ 1) = e(k) (6)

where the size of the transform matrix isN .
The first form was analyzed previously [1, 2]. In this work we

focus on the second form. IfQ is a full rank unitary transform ma-
trix the problem reduces to the ordinary linear least squares adap-
tive filtering problem. If the column vectors of the matrixQ are
orthogonal we can decompose the productQQH into a sum of
projection operators as follows:

QQ
H =

NX

i=1

qiq
H
i (7)

whereqi; i = 1; � � � ;N are the column vectors of the matrixQ.
Now if we want to project the quantities involved in the adapta-
tion process into a subspace defined by a selected set of column
vectors of the matrixQ we can define the projection operator into
a selected rank -L subspace by reducing the column space of the
matrixQ to a selected set ofL column vectors:

QLQ
H
L =

LX

i=1

qiq
H
i (8)

whereQL is anN � L matrix ofL column vectors of the matrix
Q. Now we can rewrite the equation (6) in the following form:

(XH
QL)(Q

H
L �h(k+ 1)) = e(k) (9)

and compute the minimum norm least squares solution for theL�
1 transformed coefficient vector increment given by

�~h(k + 1) = Q
H
L�h(k + 1) (10)

Generally the solution will have the following form:

�~h(k+ 1) = (QH
LX

H)+e(k) (11)

where+ denotes pseudoinverse operation.
By introducing the symbol~X for theL�M transformed data

matrix
~X(k) = Q

H
LX(k) (12)

we can rewrite the expression for the coefficient vector increment
in a more compact form. ForM > L the LS problem is overde-
termined and the solution has the following form:

�~h(k+ 1) = (~X~X
H)�1 ~Xe(k) (13)

If M < L the problem is underdetermined and the solution has
the following form:

�~h(k+ 1) = ~X(~XH ~X)�1e(k) (14)

The adaptive coefficient vector update equation is given by [1]:

~h(k + 1) = ~h(k �K + 1) + ��~h(k+ 1) (15)

where� is adaptation step size and K is the adaptation period.
The residual vector can also be expressed in terms of the trans-

formed quantities~X(k) and~h(k):

e(k) = y(k)� ~X
H(k)~h(k) (16)

By using the equations (12), (16), (13) or (14), and (15) we
obtain the complete general form of the SL RLS algorithm which
is summarized in Table I. From these equations we can see that the
filtering operation is performed in the original data domain (which
is usually the time domain), but the data vectors involved in the
coefficient adaptation process, as well as the coefficient vector, are
decomposed in the spectral domain. That operation can be seen
as spectral analysis, subspace decomposition or subband decom-
position depending on the nature of the transform which is used.
The selection of the data vectors used is defined by the form and
the shape of the window in the spectral domain. The choice of the
window can be fixed, dynamic or adaptive (data, state and/or time
dependent).

1. ~X(k) = QH
LX(k)

2. e(k) = y(k)� ~XH(k)~h(k)

3.a. �~h(k + 1) = (~X~XH)�1 ~Xe(k) , M > L

3.b. �~h(k + 1) = ~X(~XH ~X)�1e(k) , M < L

4. ~h(k + 1) = ~h(k �K + 1) + ��~h(k + 1)

Table 1: Summary of the SL RLS Algorithm

We can now estimate the computational complexity of the gen-
eral form of SL RLS algorithm by considering the number of com-
plex multiplications associated with each equation assuming the
adaptation period equalsK. Transformation of the input data vec-
tor associated with equation (12) requiresKLN multiplications.
The residual computation defined by equation (16) requiresML
multiplications. Coefficient vector increment calculation defined
in (13) requires(2L2 + L)M multiplications and theL� L ma-
trix inversion, while the corresponding calculation defined in (14)
requires(2M2+M)L multiplications and theM �M matrix in-
version. This gives a total ofKLN+2M(L2+L) multiplications
andL�Lmatrix inversion for eachK sampling periods in the case
of the overdetermined system, and a total ofKLN+2L(M2+M)
multiplications and theM �M matrix inversion for eachK sam-
pling periods in the case of the underdetermined system. For par-
ticular transformation matrices the actual computational complex-
ity can be significantly reduced by eliminating the redundancy as-
sociated with the input data vectors and the transform matrix col-
umn vectors. For example, if the DFT is used as a transforma-
tion method, the Goertzel algorithm can be used for each spectral
line and the number of multiplications required for computation
of equation (12) can be reduced toKL . Also in the case of the
real sinusoids the sample correlation matrix will have a centroher-
mitian structure and the computational reduction of 75% for its
inversion is possible [6].



3. ADAPTIVE LINE ENHANCEMENT USING SL RLS

The adaptive line enhancer (ALE), which is also called the spec-
tral line enhancer, is a device that may be used either for detection
of a periodic or narrowband signal in a noncoherent background,
or for elimination of a narrowband interference from a broadband
signal of interest [5, 7]. In this work we focus on the use of ALE
for adaptive comb filtering aimed for extracting multiple sinusoids
from a broadband signal. The conventional ALE may be imple-
mented using either an adaptive FIR or IIR filter. Recently, new
approaches are reported based on using the subspace filter [4] and
subband (multirate) technique [3]. Using the property of signal
energy compaction in subspace or subband signal decomposition
the subspaces or subbands containing only noise (or broadband
signal) can be ignored in the process of adaptive narrowband sig-
nal enhancement or extraction. Hence, the adaptation process is
applied on the reduced rank subspace or reduced frequency range
and the computational power of the algorithm is used more effi-
ciently. We follow the approach of reducing the computational
load by focusing our efforts on the frequency range occupied by
the signal of interest. Since in the case of the adaptive comb filter
it is only a discrete set of spectral lines that form the signal of in-
terest for adaptation process we use the DFT decomposition of the
signal and reduce it to a discrete set of spectral lines.

The frequency domain ALE is analyzed in [8] and it is shown
that the optimal coefficient set has a matrix form with nonzero
off-diagonal elements. Using theN -point DFT (FFT) based ALE
yields limited performance if adaptation is performed indepen-
dently for all spectral lines because it corresponds to adaptation
using only the diagonal elements of the optimal coefficient matrix
and ignoring the off-diagonal terms. Thus the suboptimal scheme
was proposed which takes into account the diagonal and two clos-
est off-diagonals of the weight matrix. A similar problem caused
by aliasing is noticed in the case of subband filtering based ap-
proach [9], and the solution is proposed in a form of additional
auxiliary subband that employs cross-terms. In the DFT the leak-
age effect caused by aliasing is more severe than in the case of the
subband approach because of the low attenuation of the sidelobes.
The case of coinciding frequencies (the frequency of interest is
transformed exactly to one spectral line by using N-point DFT)
is practically improbable [8], so we have to base the solution on
the assumption of noncoinciding frequencies which involves the
leakage effect.

Consider the case where the input signalx(k) is in the form of
a sum ofp complex sinusoids:

x(k) =

pX

i=1

Aie
j(!ik+�i) + �(k): (17)

Note that the case of real sinusoids is a special case of (17). Fourier
transform of this signal consists ofp spectral lines (one for each
complex sinusoid) and the transform of the noise term:

~x(k) =

pX

i=1

Aie
j�i�(! � !i) + ~�(k): (18)

In the case of coinciding frequencies, filtering of the signal vector
x(k) by a set of appropriate column vectors of N-point DFT matrix
would separatep spectral lines combined in~x(k) and the signal
could be represented byp uncorrelated spectral domain samples.
However, in the case of non-coinciding frequencies, due to the

leakage effect, filtering of the input signal vector with any of the
DFT column vectors yields a linear combination of all the terms
present in the Fourier transform:

~xjl(k) = xjl(k)ql =

pX

i=1

Aie
j�iql(!j) + ~�(!)ql(!) (19)

whereql(!j) = ql(! = !j). So, the input data matrix consists of
correlated spectral domain data samples. The data can be decorre-
lated using the LS method and selecting the data correlation matrix
rank of the order equal top. Hence, the SL RLS algorithm with
L = p is adequate for this type of problem. It is also possible to
use a modified Goertzel algorithm which makes it possible to cal-
culate anN -point DFT at any value of the frequency (not only at
integer multiples of the sampling frequency divided byN ) [10].

4. SIMULATION RESULTS

In this section we present some typical examples of the simulation
results showing the performance of the ALE comb filter based on
the SL RLS algorithm. We consider the problem of removing mul-
tiple real sinusoidal signals from a composite input signal which
consists of a sum of the broad-band and sinusoidal signal compo-
nents:

x(k) =

pX

i=1

Ai sin (!ik +�i) + �(k) (20)

We use the example withp = 3 sinusoidal components with am-
plitudesA1 = 1;A2 = 0:35;A3 = 0:2, phases�1 = �2 =
�3 = 0, and frequencies!1 = 8:1(2�=N), !1 = 11:2(2�=N),
!1 = 16:3(2�=N) whereN = 64 represents the size of the DFT,
and�(n) is the uniformly distributed white noise with zero mean
and variance 0.00001.

In Fig.1 the averaged convergence curves are shown for the
three algorithms: SL RLS, APA and NLMS. For APA and the SL
RLS algorithm the value of the stepsize parameter� is selected
to be equal to 0.1, while for NLMS algorithm it is set to 1. The
adaptation is performed on a sample-by-sample basis. For APA
the projection orderM = 6. For SL RLS the spectral domain
projection orderL = 6 and the time domain projection order is
M = 6. Simulation results show that the SL RLS algorithm con-
verges much faster than the NLMS algorithm and that its perfor-
mance is very similar to the performance of the full band APA
algorithm. Selecting stepsize close to the value of 1 for APA and
SL RLS algorithm increases the convergence rate of the algorithms
but at the expense of increasing the magnitude of the residual. In
Fig.2 the impact of the adaptation stepsize� on the performance
of the SL RLS algorithm is shown. Averaged convergence curves
for the three values of the adaptation stepsize parameter 0.1, 0.04,
0.03 are shown. There is a tradeoff between the convergence speed
and the misadjustment associated with the choice of this parame-
ter but its impact is significant only for values of the stepsize close
to 1. In Fig.3 the influence of the selection of the time domain
projection order on the performance of the SL RLS algorithm is
shown. Averaged convergence curves for the three values 6, 4, and
3 of the projection order parameter are shown. Simulations show
strong impact of the time domain projection order on the conver-
gence speed of the algorithm.
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Figure 1: The convergence curves for ALE comb filter using
three algorithms: NLMS, APA, and SL RLS.
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Figure 2: Convergence curves for ALE comb filter using SL
RLS algorithm with different stepsizes: � = 0:1, � = 0:04,
and � = 0:03.
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Figure 3: Convergence curves for ALE comb filter using SL
RLS algorithm with different projection orders: M = 6, M =
4, and M = 3.

5. CONCLUSION

In this paper we have presented a new family of adaptive filter-
ing algorithms based on the transform domain signal decomposi-
tion and linear least squares filtering of the selected subset of the
transform domain signal components. We showed that the RLS
method can efficiently solve the problem of crosscorelation be-
tween the non-ideally separated spectral components while trans-
form domain decomposition makes it possible to reduce the spec-
tral dimension of the input signal. This approach is particularly
suitable for types of signals and applications where transform do-
main decomposition results in high energy compaction. The main
characteristics of the resulting algorithms are fast convergence and
computational efficiency. The performance of the method is shown
in an example of ALE comb filter where DFT is used as transfor-
mation method. The focus of our further work will include the
other types of transforms such as DCT or Wavelet transform.
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