
AUXILIARY FUNCTIONS AND OPTIMAL SCANNING FOR ROAD DETECTION BY
DYNAMIC PROGRAMMING

N. Merlet

Institute of Comp. Science,
The Hebrew University,
91904 Jerusalem, Israel

J. Zerubia

INRIA, BP 93
2004 Route des Lucioles

06902 Sophia Antipolis Cedex, France

ABSTRACT

Shape information is useful for road detection to improve
the correctness and smoothness of the results. Within the
frame of dynamic programming, the proposed method stores
in an auxiliary image the global direction V(M) followed in
the current shortest path. The potential is a function of this
image, so that pixels prolongating the current shortest path
are favored. The auxiliary image is updated recursively at
the same time as the energy, during the optimization.

A variant of this method stores in the auxiliary image
the center of the circle tangent to the current shortest path.
Another application presented herein computes the average
of the potential instead of its sum.

The optimality principle is not verified anymore with the
auxiliary functions but they give smoother results without
increasing the complexity. Furthermore, several improve-
ments w.r.t. the scanning allow gains of up to 50 % for the
computational time.

1. INTRODUCTION

Shape information is useful for road detection when char-
acteristics such as grey-levels and contrasts do not discrim-
inate enough the roads from the background, or to obtain
smoothed results.

In [4], we defined a potential on several pixels in order
to be able to both integrate curvature and use dynamic pro-
gramming (DP). This curvature information remains very
local, and the complexity becomes too high if we general-
ize this potential to more than three successive pixels.

In order to take into account information in a farther past
and to impose global constraints on the solution with still a
low complexity, we must define some memory process. We
propose to use a new “auxiliary function” V to do so.

We use the same notations as in Belman’s book [1] for
the state s (herein a pixel), the decision q which uniquely
defines its neighboring successor�(s; q), the energy U, and
the potential�. The potential is a function of s, q but now
also of the auxiliary function V at�(s; q). tmp is a tem-

porary test value for U. Iftmp is smaller than U, U takes
its value, and V is updated relatively to the decision. More
formally, we perform until convergence of U :

8s;8q;

tmp  �(s; q; V (�(s; q))) + U(�(s; q)) (1)

tmp < U(s) ) U(s) tmp (2)

V (s) �(s; q; V (�(s; q))) (3)

where the innovations have been underlined, and U is ini-
tialized at+1 except at one extremity of each road, where
it is equal to zero. The choice of V and� allows a great
variety of applications. We present in the following three
possibilities : smoothness of the direction, of the curvature,
and minimizing the average of the potential.

2. AUXILIARY FUNCTIONS FOR SMOOTHNESS

In this section, our aim is to obtain smoother results than
with ordinary dynamic programming. We see in Fig. 2 the
results (in white) obtained without any smoothness constraint :
the path is very irregular and is deviated by a white spot at
the bottom left.

First we define the auxiliary function as the global direc-
tion ~V followed in the current shortest path (see Fig. 1). The
potential at a point M is the sum of a grey-level and contrast
potential �1(M;N), and of a shape potential
�2(~V (N); ~NM), where N is a neighbor of M.�2 increases
with the deviation of M from the line defined by N and
~V (N), and relatively to a smoothness parameter a priori
chosen. Thus, pixels prolongating the current shortest path
are favored.

~V (M) is recursively defined in Equation (3). It is up-
dated as a linear combination of~V (N) and of ~NM rela-
tively to a memory parameter. Thus, the location of M up-
dates the global direction of the path. The solution roughly
appears as a succession of lines (for more details, see [6])
and the white spot does not deviate the path anymore (see
Fig. 3).



In a variant, we define the auxiliary function as the cen-
ter of the circle tangent to the current shortest path in M. The
memory parameter determines the number of points consid-
ered to compute the circle. The solution roughly appears as
a succession of arcs in Fig. 4 (for more details, see [6]).

3. AUXILIARY FUNCTIONS AND AVERAGE
POTENTIAL

A well known problem of dynamic programming is the bias
of the shortest path. Until now, we have defined the energy
as the sum of the potentials along the path, therefore it de-
pends not only on the values of the potential but also on the
number of terms in the sum : paths containing a smaller
number of pixels tend to be favored, although they do not
necessarily correspond to the feature we are looking for.

Thus, we define the auxiliary function as the number
of points in the shortest path, and the energy as the aver-
age of the potential. We have to tackle this problem both
theoretically and practically : if there is a loop in a path
and if the average potential is smaller on the loop than on
the path, then the minimum of the energy may never be
reached, and the algorithm may never stop. We solve this
problem by scanning only part of the couples (state, deci-
sion), practically half of the decisions. Of course, such a
simple restriction was possible in these examples because
the features had a constant global direction, there was no
”return” of the roads. With these strong restrictions, loops
were impossible.

The curves are longer and less smooth than with simple
DP (see Fig. 5 and 6). This shows that the classical defini-
tion of the energy as the sum of potentials actually imposes
an implicit smoothness constraint. Furthermore, the ade-
quacy of the grey-level and contrast potentials to a given
image may now be evaluated without bias of smoothness.

4. OPTIMAL SCANNING

We have compared the number of operations performed on
four images with 14 different methods of scannings. All the
images have been rotated (modulo�=2) such that the roads
are approximately horizontal. Each of the four images is
represented by one of the four black dots in each of the three
graphs of Fig. 7. Each graph corresponds to one of the three
fastest methods.

The aim is to avoid unnecessary or redundant computa-
tions. In particular, the three fastest and independent meth-
ods described below allow a gain of up to 50 % relatively to
the reference scanning used by [3] :

� eliminating part of the states during integration, well
known as prunning, and shown in the middle graph of
Fig. 7. When the energy of a state is higher than the

energy of the aim, this state is not evaluated. Local
prunning is slightly better than global prunning, but
it imposes to associate any pixel of the image to the
closest path on the basis of its extremities, and opti-
mality may be lost. Local prunning is different from
global prunning only when there are several roads in
the image.

� ordering the states at initialization, shown in the right
graph of Fig. 7. This is a surprising point : scanning
with the external loop along the rows and the inter-
nal loop along the columns does not have the same
performance as scanning first the columns and then
the rows, and this depends upon the orientation of the
roads (horizontal or vertical). A general algorithm is
used in the case where the direction of the road (hor-
izontal or vertical) is not a priori known. It alternates
external loops along the rows and along the columns.
The reference scanning [3] is shown in thick, the ex-
ternal loop is along the rows. In the four images con-
sidered herein, the direction of the roads is roughly
horizontal, so that an external loop along the columns
leads to the fastest convergence.

� stopping the iterations before convergence, shown in
the left graph of Fig. 7. The final iterations are used in
these examples only to check optimality, not to mod-
ify the solution anymore. They may be skipped after
using a heuristic criterion, for instance when the path
has not changed position within two successive itera-
tions.

These three methods are independent, so they may be
combined and their gains cumulated.

Other methods did not improve the results, such as :

� eliminating part of the states at initialisation, scanning
only regions of interest. Then, a compromise has to
be found between speed and rightness of the result,
which heavily depends on the chosen windows.

� ordering the states during iteration, according to en-
ergy value or time of last change. The computations
were worse than with the reference scanning [3].

5. DISCUSSION AND CONCLUSION

Two pionnering works should be quoted. When Sha’ashua
and Ullman [7] compute the saliency map in binary images,
the result of one iteration is taken into account in the po-
tential at the next iteration. Auxiliary functions are there-
fore used implicitly, although the concept is not formally
defined.



The other work is from Danielson [2], by computing
an octagonal distance, a mixing of 4-connectivity and 8-
connectivity. Here too, the value of the potential depends
on the oddness of the energy, which is actually the auxiliary
function in this application.

Another application may be mentionned for the use of
auxiliary functions : computing maps of the Mahalanobis
distance [5] for stereovision. The algorithm is a variant
of Danielson’s algorithm, where the auxiliary function con-
tains the label of the nearest point of the object.

Finally, we should notice that the optimality principle is
not verified anymore and the path found is not necessarily
optimal. In spite of this problem, the roads found are in-
deed globally smoothed with constraints of direction or cur-
vature. The complexity is similar to dynamic programming
without taking shape into account.

6. REFERENCES

[1] R. Bellman, R. Kalaba,Dynamic Programming and
Modern Control Theory, Academic Press, New York
and London, 1965.

[2] P.E. Danielson, Euclidean Distance Mapping,CGIP
14, 227-248, 1980.

[3] M.A. Fischler, J.M. Tenenbaum, and H.C. Wolf, De-
tection of roads and linear structures in low-resolution
aerial imagery using a multisource knowledge integra-
tion technique.CVGIPvol. 15, pp. 201-223, 1981.

[4] N. Merlet, J. Zerubia, New Prospects in Line Detec-
tion by Dynamic Programming,IEEE-Trans PAMI,
vol. 18, n. 4, pp. 426-431, 1996.

[5] N. Merlet, Integration of Global Information for Fea-
tures Matching in Stereo Vision and for Roads Detec-
tion in Satellite Images. Ph. D. Thesis, Hebrew Uni-
versity of Jerusalem, 1996.

[6] N.Merlet, J.Zerubia, Integration of Global Information
for Roads Detection in Satellite Images, joint research
report 3239, Hebrew University/INRIA, August 1997.
(ftp.inria.fr/INRIA/publication/RR/RR-3239.ps.gz)

[7] A. Sha’ashua, S. Ullman, Structural Saliency : The
Detection of Globally Salient Structures Using a Lo-
cally Connected Network,Proc. ICCV, pp. 321-327,
1988.

Φ2(θ)        θ=ks.θ
V(M)=km.V(N)+(1-km).NM

Start
M

V(N)

N

Figure 1: Computation of the global direction

Figure 2: Global direction with a memory parameter equal
to 0.9 and a smoothness parameter equal to 10 (almost no
direction constraint).

Figure 3: Global direction with a memory parameter equal
to 0.9 and a smoothness parameter equal to 400.



Figure 4: Global curvature with a memory parameter equal
to 30 pixels and a smoothness parameter equal to 400.

Figure 5: Minimizing the average of the potential.

Figure 6: Minimizing the average of the potential.
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Figure 7: Comparison of different scanning organisations.
Left : stopping the iterations before convergence. Middle :
prunning. Right : with different orders of scanning.


