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ABSTRACT Ahys . be the adaptive filter coefficient vector, and its in-

crement respectively. Time subscripts have not been shown

This paper analyzes an SVD based low rank transform do- ) ,
for brevity. We are trying to solve the system

main adaptive filtering algorithm and proves that it performs
better than Normalized LMS. The method extracts an under- XH(h+Ah) =y, orequivalently, X Ah=e. (1)

determined solution from an overdetermined least squares

problem, using a part of the unitary transformation formed In this system, there ar& unknowns (filter taps), and/

by the right singular vectors of the data matrix. The aim equations.

is to get as close to the solution of an overdetermined sys-

tem as possible, using an underdetermined system. Previ- 2 LOW RANK TRANSFORM DOMAIN

ous work based on the same framework, but with the DFT ALGORITHM

as the transformation [1, 2], has shown considerable im-

provement in performance over conventional time domain \\e modify the problem defined by (1), by applyify, a
methods like NLMS and Affine Projection. The analysis of subset of a unitary transformation given by

the SVD-based variant helps us to understand the converq,, v = [Qi(nxP)Qaz(nxn—p)] WhereP < M, so that
gence behavior of the DFT-based low complexity method. (1) now becomes

We prove that the SVD-based method gives a lower residual

than NLMS. Simulations confirm the theoretical results. Q"X Ah=Q,"e. (2)
This new underdetermined problem has a minimum norm
1. INTRODUCTION solution given by
Transform domain methods have been used in adaptive fil- Ah = XQ1(Q:"X7XQ;) "' Q1 e, (3)

tering problems for reducing the complexity in various ways. o

The Frequency Domain Adaptive Filter [3] uses the convo- and the updated filter is given by
lution property of the DFT. The efficiency of subband meth-
ods [4] is due to their slower rate of adaptation. Subspace
methods can also be considered transform domain method§heren,, denotes the adaptive filter at tinke It is to be

which use the singular vectors of the data as transforms.gted that NLMS [6] and Affine ProjectioAP)[7, 8], fit
These are effective rank-reducing mechanisms [5], usefulinig this framework, usingQ = I, y, an identity. For

hi+1 = hy + pAhyg, (4)

for low rank problems. o our low complexity algorithm [2], we used the DFT as the
Our transform domain adaptive filtering framework [1, transformQ. We used one DFT vector as oQy; for each
2], is based on the linear least squares problem. Let iteration. In [1], the near optimal); is proven to be ob-

tained bymax||Q¥e||. In [2], we described an approxi-
Xrun = [x1,%2, .. %] yrg !IQl | [ ] - de pprc
mate but efficient alternative which involved generating a

be the matrix formed from the received signgly .1 = set of random numbers whose pdf confirme¢e T(x)|2.
[y1,v2,...yn]T be the desired signal vector angr.; = These random numbers then represented which column of
[e1,e2,...en]” be thea priori error vector, in an echo can-  the DFT matrix to use as the transform for each iteration.
cellation problem as shown in figure 1. LBt;x; and This and other modifications resulted in a low complexity
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3. SVD-AP: CONVERGENCE ANALYSIS whereyy, is the desired signal vector at tirkegiven by

In this section, we attempt to understand the convergence Vi = Xtho + Ty (8)
characteristics of the algorithm described in section 2, by
analyzing a similar algorithm, based on the SVD instead of The termI; represents an additive zero-mean white Gaussian
the DFT. noise vector, with each element having a variante

In SVD-AP, the set of right singular vectors of the data  Inorder to derive the total tap weight weight error power,
matrix at each iteration forms the full-rank transform for we decompose; into its modal components projected onto
that iteration, and a subset of those singular vectors is sethe eigen spac¥ of the correlation matrix:
lected as the low rank transformation. We derive expres- -
sions for the tap weight convergence in the mean square and Aj, = UFE[GCHU; )
the residual, and compare them with the corresponding ex-
pressions for NLMS given in the literature [9]. We neglect WhereUj is the ;" column of U. The tap weight error

the computational complexity involved with the choice of power is now given byE[(Z (] = Zj‘igl Aj,. Using
the SVD as our transformation. We use the rank 1 versionequations (4), (3), (7) and (8) and simplifying, we get the
of our algorithm, and call iEVD-AP(1). expressions for modal tap weight errors at titne 1 as

Letus defindR = E[x;x//] = UAU" with);, j= B .
0,1,...,M—1,as the eigenvalues. Now considef X, X |, s (1—p)2N, + ‘jvij . j=1 (10)
X being of sizeM x N, whereN > M. Its EVD is iden- Jeat Xjk’ j#i

tical to that of R, except that its eigenvalues are greater by

a factor of NV, i.e.,, £ [X,XH] = U(NA)U#. Using the It can be seen from (10) that only the mode corresponding
stationarity of the signal, the instantaneous SVD of the datato the current index is affected. The residual at time 1,
matrix X can be written as er+1, IS given by the first element of (7). The expression for
the MSE can be found from the literature [9] to be

Xy = UMxM\/N [Anrxr OMx(N—M)]VngN Q)
M-1

The unitary transform to be used is now Ellexsa 1= > X, | + o2 (11)
7=0

Q=V=[Vy, Vi ... Vy_i].

We calculate the transform domain error vector\a€e. Substituting (10) in (11), we get the MSE as

Our low rank transform to be used at tirkewill now be
given bymax||Ve||, whereV; is thei" column of V,

2
i.e., the i*” right singular vector. From now on, we will Ellexnl] = Z/\j/\jk‘l _\“(2 _ “)/\“\”‘1/
refer toi as theindex of the low rank transform at tima. ! A
The system is the same as defined in (2) and the solution as B
defined in (3), withQ; = V;. e
It is to be noted here that fo¥ > M, XV, = 0, for +o?[1+ ik (12)

M < ¢ < N, and hence the solution is trivial. In other
words, selection of &; that is not in the column space of 51 Comparison with NLMS
X* is possible, but not desirable. So we have to limit our
selection of indices to the firgt/ . Slock [9] follows essentially the same steps in order to ob-
The convergence properties of LMS [10] and NLMS [9] tain the expressions for the modal tap weight error and MSE
have been extensively analyzed in literature. We shall fol- for NLMS. With some approximations, we get the MSE
low a procedure similar to a majority of these works, in that learning curve for NLMS as
we shall project the tap weight error onto the eigenvectors
of the data correlation matrix. ) ~
Let h, be the optimum filterj.e., the actual echo path. Ellern 1= [ D2 MALies
Let h;, be the adaptive filter at time instahtand let J

¢k =h, —h (6) D
be the tap weight error vector at tirhe The lengthV resid- SSUAZAL L EDYIPE:
ual vector at time is given by (2 —p) B L g2 1 T (13)

. 2
p N (=)
e ZYk_Xk hk—1~ (7) c



The subscript L is used to distinguish values for NLMS using the DFT of the signal. From (10) and (12), it is clear
from the similar values for SVD-AP. Comparing (12) and that the maximum reduction in the tap weight convergence
(13) tells us that the signal term for the residual in SVD- at any given iteration is obtained whbath Xik and )\; are
AP(1) does not depend on the signal eigenvalues, while thehigh. On the other hand, it can be proved that

signal term in NLMS does.

H 21 _ 3. 2
Consider the case when we start with equal modal tap El[ViTer|lI"] = NAidi, + o7 (17)
weight errors in both NLMS and SVD-AP(1) attinke- 1. Hence when we maximi2pV e, ;1 ||, we are actually achiev-
That is to say\;, _, = Arj,_,, forj = 0,1,...,M —  jng max;[A;);,] Thus ideally, we have to select indices

1. Now we shall compare the one-step improvement in the
residual in the two algorithms. We compare the signal terms

(A andC) and the noise termvB(andD) separately. We can that the choice of indices is determined solely Yy the

alsp neglect the subscriptin Ay ;, _,, since the modal tap data eigenvalues (square of DFT coefficients in the case of
weight errors of NLMS and SVD-AP(1) are assumed t0 beé per o) Hence, it is reasonable to select indices that fit

initially equal. , 5 y the statistics of the DFT coefficients of which is what we
Consider the signal term df{|cj+1["] — Eller,. ) do in the low complexity DFT-based method. But for initial
We have to prove that convergence, this argument is not fully suited, since at that

which will maximize A; A;, . After convergence of the tap
weights has occurred, all, have sufficiently converged so

N AN time, the);, 's are also significant.
ANk, > =L (14) Finally, the performance degradation that occurs in the
252 case ofV < M can be explained using the above analy-
) ] ] ~ sis. For a data matriX s« v, there will be M left singu-
Since we have selectédat iterationk such that\;\;,_, = lar vectors andV right singular vectors in the SVD. When
max; A; A, _,, we can write the followinginequality forthe v < A/, we are able to adapt in only any one of the fikst
RHS of (14): of the possiblel/ modes. The mode containing the largest
~ error could be one of the othéd — N modes, hence the
Zj /\?/\Jk—l <X Zj Aj — X adaptation might not be taking place in the best possible
= J rm Y =Xy, (15) LS . S
Zj Ay~ Zj Aj mode. A similar logic can be applied in the DFT-based

method,i.e., the modes of adaptation are limited, hence a
which is nOthing but the condition in (14) ConSidering the degradation in performance occurs there too.

noise term ofZ[|e41|*] — E[|er,,, |*], we have to prove

4. SIMULATIONS
1 DY

o= Z] : 2 (16) . . . .

N (Z' /\j) Figure 2 compares the residual error obtained in an echo

! canceler configuration, from SVD-AP(1), optimal DFT-AP(1),

This conditionis easily proved using tfuchy-Schwartz ~ affine projection of order 4 (AP(4)) and normalized LMS.
inequality. Since we have proved both the signal and noiseThe tap weight error curves were similar to the residual
terms in the residual of SVD-AP(1) are less than equal to Curves. For the input signal, an AR process with one pole
their Counterparts in NLMS, we can say that the perfor_ at0.2 is used. The echo path is a filter of Iength 128. This
mance of SVD-AP(1) is always better than or equal to that figure demonstrates that our algorithm performs better than

of NLMS. the time domain algorithms.
Figure 3 compares the theoretical and simulated residual
3.2. Relevance to DFT-AP(1) and tap weight error for SVD-AP(1). The input used is a

lowpass AR(1) process with a pole at 0.5. A 128-tap filter
The analysis of SVD-AP(1) gives us a good insight into the is used as the echo filter and an SNR of 40 db is maintained.
working of the DFT-based low complexity version, M-DFT- The SVD, averaged oveér1 andk, is used as the transform
AP(2). We extrapolate many of the conclusions derived in atk, in order to avoid instability. The time-varying singular
the SVD-AP analysis to DFT-AP. The modes of conver- values are used for the theoretical calculation of tap weight
gence of the tap weight are now the squares of the DFTerror and residual;’s vary with time). It can be seen that
coefficients of the tap weight error vector. If we select fre- the simulation for SVD-AP(1) matches the theoretical curve
guency bin: for a particular iteration, the tap weight error fairly closely. The degradation in the residual simulation
is decreased mainly in that bin. Some leakage effects alsocompared to the theoretical values can be attributed to the
cause some convergence in other bins, unlike the SVD, be-changing statisticd.€., SVD) of the data. This introduces
cause of imperfect diagonalization of the correlation matrix. some deviation from perfect diagonalization, which is not
A justification can also be found for the selection of indices accounted for in the derivation.



5. CONCLUSIONS

In this paper, we analyzed an algorithm based on a new
transform domain framework, with the SVD as the trans-
form and showed that it provides better performance than
NLMS. The SVD based analysis gives us good insight into
the working of the DFT-based low complexity algorithm de-
scribed in [2]. Apart from acoustic echo cancellation, this
algorithm can also be applied to system identification and
possibly data echo cancellation problems.
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Figure 1: Block Diagram of Adaptive Echo Canceler
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Figure 2: Comparison of Residuals: Ideal SVD-AP(1),
DFT-AP(1), AP(4) and NLMS
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Figure 3: Comparison of theoretical and simulated residual
for SVD-AP(1)



