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ABSTRACT

This paper analyzes an SVD based low rank transform do-
main adaptive filtering algorithm and proves that it performs
better than Normalized LMS. The method extracts an under-
determined solution from an overdetermined least squares
problem, using a part of the unitary transformation formed
by the right singular vectors of the data matrix. The aim
is to get as close to the solution of an overdetermined sys-
tem as possible, using an underdetermined system. Previ-
ous work based on the same framework, but with the DFT
as the transformation [1, 2], has shown considerable im-
provement in performance over conventional time domain
methods like NLMS and Affine Projection. The analysis of
the SVD-based variant helps us to understand the conver-
gence behavior of the DFT-based low complexity method.
We prove that the SVD-based method gives a lower residual
than NLMS. Simulations confirm the theoretical results.

1. INTRODUCTION

Transform domain methods have been used in adaptive fil-
tering problems for reducing the complexity in various ways.
The Frequency Domain Adaptive Filter [3] uses the convo-
lution property of the DFT. The efficiency of subband meth-
ods [4] is due to their slower rate of adaptation. Subspace
methods can also be considered transform domain methods
which use the singular vectors of the data as transforms.
These are effective rank-reducing mechanisms [5], useful
for low rank problems.

Our transform domain adaptive filtering framework [1,
2], is based on the linear least squares problem. Let

XM�N = [x1;x2; : : :xN]

be the matrix formed from the received signal,yN�1 =
[y1; y2; : : : yN ]T be the desired signal vector andeN�1 =
[e1; e2; : : : eN ]

T be thea priori error vector, in an echo can-
cellation problem as shown in figure 1. LethM�1 and
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�hM�1 be the adaptive filter coefficient vector, and its in-
crement respectively. Time subscripts have not been shown
for brevity. We are trying to solve the system

XH (h+�h) = y; or equivalently, XH�h = e: (1)

In this system, there areM unknowns (filter taps), andN
equations.

2. LOW RANK TRANSFORM DOMAIN
ALGORITHM

We modify the problem defined by (1), by applyingQ1, a
subset of a unitary transformation given by
QN�N = [Q1(N�P )Q2(N�N�P )] whereP < M , so that
(1) now becomes

Q1
HXH�h = Q1

He: (2)

This new underdetermined problem has a minimum norm
solution given by

�h = XQ1(Q1
H
XHXQ1)

�1Q1
He; (3)

and the updated filter is given by

hk+1 = hk + ��hk; (4)

wherehk denotes the adaptive filter at timek. It is to be
noted that NLMS [6] and Affine Projection(AP)[7, 8], fit
into this framework, usingQ = IN�N , an identity. For
our low complexity algorithm [2], we used the DFT as the
transformQ. We used one DFT vector as ourQ1 for each
iteration. In [1], the near optimalQ1 is proven to be ob-
tained bymax

Q1

kQH
1 ek. In [2], we described an approxi-

mate but efficient alternative which involved generating a
set of random numbers whose pdf confirmed tojDFT(x)j2.
These random numbers then represented which column of
the DFT matrix to use as the transform for each iteration.
This and other modifications resulted in a low complexity
high performance algorithm for adaptive filtering, whose
performance we demonstrated in an echo canceler setup (fig-
ure 2).



3. SVD-AP: CONVERGENCE ANALYSIS

In this section, we attempt to understand the convergence
characteristics of the algorithm described in section 2, by
analyzing a similar algorithm, based on the SVD instead of
the DFT.

In SVD-AP, the set of right singular vectors of the data
matrix at each iteration forms the full-rank transform for
that iteration, and a subset of those singular vectors is se-
lected as the low rank transformation. We derive expres-
sions for the tap weight convergence in the mean square and
the residual, and compare them with the corresponding ex-
pressions for NLMS given in the literature [9]. We neglect
the computational complexity involved with the choice of
the SVD as our transformation. We use the rank 1 version
of our algorithm, and call itSVD-AP(1).

Let us defineR = E[xkxHk ] = U�U
H , with�j ; j =

0; 1; : : : ;M�1;as the eigenvalues. Now considerE
�
XkX

H
k

�
,

Xk being of sizeM �N , whereN � M . Its EVD is iden-
tical to that ofR, except that its eigenvalues are greater by
a factor ofN , i.e.,E

�
XkX

H
k

�
= U(N�)UH . Using the

stationarity of the signal, the instantaneous SVD of the data
matrixXk can be written as

Xk =UM�M

q
N
�
�M�M 0M�(N�M)

�
VH
N�N : (5)

The unitary transform to be used is now

Q = V = [V0 V1 : : : VN�1] :

We calculate the transform domain error vector asVHe.
Our low rank transform to be used at timek will now be
given bymaxkVH

i ek, whereVi is the ith column ofV,
i.e., the ith right singular vector. From now on, we will
refer toi as theindex of the low rank transform at timek.
The system is the same as defined in (2) and the solution as
defined in (3), withQ1 = Vi.

It is to be noted here that forN > M , XVi = 0; for
M � i < N; and hence the solution is trivial. In other
words, selection of aVi that is not in the column space of
XH is possible, but not desirable. So we have to limit our
selection of indices to the firstM .

The convergence properties of LMS [10] and NLMS [9]
have been extensively analyzed in literature. We shall fol-
low a procedure similar to a majority of these works, in that
we shall project the tap weight error onto the eigenvectors
of the data correlation matrix.

Let ho be the optimum filter,i.e., the actual echo path.
Let hk be the adaptive filter at time instantk and let

�k = ho � hk (6)

be the tap weight error vector at timek. The lengthN resid-
ual vector at timek is given by

ek = yk �X
H
k hk�1: (7)

whereyk is the desired signal vector at timek, given by

yk = X
H
k ho + �k: (8)

The term�k represents an additive zero-mean white Gaussian
noise vector, with each element having a variance�2.

In order to derive the total tap weight weight error power,
we decompose�k into its modal components projected onto
the eigen spaceU of the correlation matrix:

e�jk = UH
j E[�k�

H
k ]Uj (9)

whereUj is the jth column ofU. The tap weight error
power is now given byE[�Hk �k] =

PM�1
j=0

e�jk . Using
equations (4), (3), (7) and (8) and simplifying, we get the
expressions for modal tap weight errors at timek + 1 as

e�jk+1 =
(
(1� �)2e�jk + �2�2

N�j
; j = ie�jk ; j 6= i.

(10)

It can be seen from (10) that only the mode corresponding
to the current index is affected. The residual at timek + 1,
ek+1, is given by the first element of (7). The expression for
the MSE can be found from the literature [9] to be

E[jek+1j
2] =

0@M�1X
j=0

�je�jk
1A + �2: (11)

Substituting (10) in (11), we get the MSE as

E[jek+1j
2] =

0@X
j

�je�jk�1
1A� �(2� �)�ie�ik�1| {z }

A

+

Bz }| {
�2[1 +

�2

N
] : (12)

3.1. Comparison with NLMS

Slock [9] follows essentially the same steps in order to ob-
tain the expressions for the modal tap weight error and MSE
for NLMS. With some approximations, we get the MSE
learning curve for NLMS as

E[jeLk+1
j2] =

0@X
j

�je�L;jk�1
1A

��(2 � �)

P
j
�2j
e�L;jk�1P
j
�j| {z }

C

+

Dz }| {
�2

2641 + �2
P

j �
2
j�P

j �j

�2
375 : (13)



The subscript L is used to distinguish values for NLMS
from the similar values for SVD-AP. Comparing (12) and
(13) tells us that the signal term for the residual in SVD-
AP(1) does not depend on the signal eigenvalues, while the
signal term in NLMS does.

Consider the case when we start with equal modal tap
weight errors in both NLMS and SVD-AP(1) at timek� 1.
That is to say,e�jk�1 = e�L;jk�1 ; for j = 0; 1; : : : ;M �
1: Now we shall compare the one-step improvement in the
residual in the two algorithms. We compare the signal terms
(A andC) and the noise termw (B andD) separately. We can
also neglect the subscriptL in e�L;jk�1 ; since the modal tap
weight errors of NLMS and SVD-AP(1) are assumed to be
initially equal.

Consider the signal term ofE[jek+1j2] � E[jeLk+1
j2].

We have to prove that

�ie�ik�1 �
P

j �
2
j
e�jk�1P

j �j
(14)

Since we have selectedi at iterationk such that�ie�ik�1 =
maxj �je�jk�1 , we can write the following inequality for the
RHS of (14):P

j �
2
j
e�jk�1P

j �j
� �ie�ik�1Pj �jP

j �j
= �ie�ik�1 ; (15)

which is nothing but the condition in (14). Considering the
noise term ofE[jek+1j2]� E[jeLk+1

j2], we have to prove

1

N
�

P
j �

2
j�P

j
�j

�2 (16)

This condition is easily proved using theCauchy-Schwartz
inequality. Since we have proved both the signal and noise
terms in the residual of SVD-AP(1) are less than equal to
their counterparts in NLMS, we can say that the perfor-
mance of SVD-AP(1) is always better than or equal to that
of NLMS.

3.2. Relevance to DFT-AP(1)

The analysis of SVD-AP(1) gives us a good insight into the
working of the DFT-based low complexity version, M-DFT-
AP(2). We extrapolate many of the conclusions derived in
the SVD-AP analysis to DFT-AP. The modes of conver-
gence of the tap weight are now the squares of the DFT
coefficients of the tap weight error vector. If we select fre-
quency bini for a particular iteration, the tap weight error
is decreased mainly in that bin. Some leakage effects also
cause some convergence in other bins, unlike the SVD, be-
cause of imperfect diagonalization of the correlation matrix.
A justification can also be found for the selection of indices

using the DFT of the signal. From (10) and (12), it is clear
that the maximum reduction in the tap weight convergence
at any given iteration is obtained whenboth e�ik and �i are
high. On the other hand, it can be proved that

E[kVH
i ek+1k

2] = N�ie�ik + �2: (17)

Hence when we maximizekVH
i ek+1k, we are actually achiev-

ing maxi[�ie�ik ] Thus ideally, we have to select indicesi
which will maximize�ie�ik . After convergence of the tap
weights has occurred, alle�ik have sufficiently converged so
that the choice of indices is determined solely by�i, the
data eigenvalues (square of DFT coefficients in the case of
DFT-AP). Hence, it is reasonable to select indices that fit
the statistics of the DFT coefficients ofx, which is what we
do in the low complexity DFT-based method. But for initial
convergence, this argument is not fully suited, since at that
time, thee�ik ’s are also significant.

Finally, the performance degradation that occurs in the
case ofN < M can be explained using the above analy-
sis. For a data matrixXM�N , there will beM left singu-
lar vectors andN right singular vectors in the SVD. When
N < M , we are able to adapt in only any one of the firstN

of the possibleM modes. The mode containing the largest
error could be one of the otherM � N modes, hence the
adaptation might not be taking place in the best possible
mode. A similar logic can be applied in the DFT-based
method,i.e., the modes of adaptation are limited, hence a
degradation in performance occurs there too.

4. SIMULATIONS

Figure 2 compares the residual error obtained in an echo
canceler configuration, from SVD-AP(1), optimal DFT-AP(1),
affine projection of order 4 (AP(4)) and normalized LMS.
The tap weight error curves were similar to the residual
curves. For the input signal, an AR process with one pole
at 0:2 is used. The echo path is a filter of length 128. This
figure demonstrates that our algorithm performs better than
the time domain algorithms.

Figure 3 compares the theoretical and simulated residual
and tap weight error for SVD-AP(1). The input used is a
lowpass AR(1) process with a pole at 0.5. A 128-tap filter
is used as the echo filter and an SNR of 40 db is maintained.
The SVD, averaged overk�1 andk, is used as the transform
atk, in order to avoid instability. The time-varying singular
values are used for the theoretical calculation of tap weight
error and residual (�j ’s vary with time). It can be seen that
the simulation for SVD-AP(1) matches the theoretical curve
fairly closely. The degradation in the residual simulation
compared to the theoretical values can be attributed to the
changing statistics (i.e., SVD) of the data. This introduces
some deviation from perfect diagonalization, which is not
accounted for in the derivation.



5. CONCLUSIONS

In this paper, we analyzed an algorithm based on a new
transform domain framework, with the SVD as the trans-
form and showed that it provides better performance than
NLMS. The SVD based analysis gives us good insight into
the working of the DFT-based low complexity algorithm de-
scribed in [2]. Apart from acoustic echo cancellation, this
algorithm can also be applied to system identification and
possibly data echo cancellation problems.

6. REFERENCES

[1] D. Linebarger, B. Raghothaman, D. Beguˇsić, R. De-
groat, E. Dowling, and S. Oh. Low rank transform do-
main adaptive filtering. InProc. of ASILOMAR, pages
123–127, 1997.

[2] B. Raghothaman, D. Linebarger, and D. Beguˇsić. Low
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Figure 1: Block Diagram of Adaptive Echo Canceler
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Figure 2: Comparison of Residuals: Ideal SVD-AP(1),
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Figure 3: Comparison of theoretical and simulated residual
for SVD-AP(1)


