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ABSTRACT
In this paper we introduce a novel and general matrix formula-

tion of classical signal extension methods for subband processing
of finite length signals. Considering a paraunitary 2-channel fil-
ter bank as transformation cell, this new characterization makes it
possible to show that perfect reconstruction of finite signals can be
ensured without resorting to extra subband samples; thus, by using
some traditional signal extension methods, non-expansionist trans-
forms can be defined. Some of these transformations are analyzed
to illustrate our theoretical results.

1. INTRODUCTION

It is well known that border distortions appear when reconstructing
finite length signals after being analyzed with any paraunitary FIR
filterbank. To remove this effect two different approaches have
been pointed out by different authors: (a) artificial expansion of
the finite signal before the analysis stage [1, 2, 7, 8]; (b) design of
border filters or wavelets on the interval [5, 4]. These may be mer-
ged into a single approach [6], since the first class of methods lead
to the construction of a special type of border filters. Despite these
advances on the study of the solutions to this undesired effect, we
have observed some unsolved questions:

1. The non-existence of a general formulation for all extension
methods; classical extensions such as zero padding, perio-
dic and symmetric extensions seem not to be related to each
other.

2. Except for periodic extension and symmetric extension with
linear phase filters, all these extensions are expansionist,
that is, there are more coefficients in the transform domain
than samples in the original signal.

In this paper, we introduce a novel formulation that, in con-
tradiction to the result in [8], proves [3] that not every extension
lead to a non-expansionist transform; however, as we will show,
there exist some classical extensions that can be re-formulated as
non expansionist transforms. So, in addition to the introduction of
the formulation, we present the conditions over the transformation
matrix to guarantee that, after signal extension, expansion is not
necessary.

2. PRELIMINARIES AND NOTATION

Throughout this paper, vectors are denoted by lower case bold let-
ters (h) and matrices by upper case bold letters, fixing their size

(H = Hn�m). The Nth order null and identity matrices are repre-
sented by0N andIN respectively. Let us consider a finite signalx

of even lengthN , x = [x(0); x(1); � � � ; x(N � 1)]T . We define
a extension ofx asxe = [xTl ;x

T ;xTr ]
T . This extension is linear

if xl andxr depend linearly onx, that is, if there exist matrices
Cl;Cr such thatxl = Clx andxr = Crx. If both xl andxr
have lengthM , the extended vector has lengthN + 2M and can
be expressed asxe = [CT

l ; IN ;C
T
r ]
Tx.

In addition, we consider the paraunitary filter bank given by
the low pass filterh = [h(0); h(1); � � � ; h(L� 1)] (of even length
L > 2) and the associated high pass filterg = [�h(L�1); h(L�
2); � � � ;�h(1); h(0)]. We build the matrixHm�(m+L�2), whose
m rows contain the filters, adding zeros when necessary. For the
sake of simplicity, we will write theHm�(m+L�2) block Toeplitz
form [5, 6] as:2
664
AK AK�1 : : : A0 0 : : : : : : 0

0 AK AK�1 : : : A0 0 : : : 0
...

. ..
.. . : : : : : :

. . .
. . .

...
0 : : : : : : 0 AK AK�1 : : : A0

3
775 ;

where0 = 02�2, K = L=2� 1 and

Aj =

�
h(2j + 1) h(2j)

�h(L� 2j � 2) h(L � 2j � 1)

�
8j = 0; : : : ;K:

We setm = N + 2M � L+ 2 and define the transformation
ye = H(N+2M�L+2)�(N+2M)xe. This amounts to processing
xe by means of the analysis filter bank given byh andg, only
retaining theN +2M �L+2 central output samples. The whole
transformation of the original signalx can be expressed asye =
Gx, where the transformation matrix is

G =H(N+2M�L+2)�(N+2M)

"
Cl

I

Cr

#
:

Let us summarize some properties of the matrix

H
4

=H(N+2M�L+2)�(N+2M):

It has orthonormal rows (not columns), soHHT = IN+2M�2K 6=
HTH. Nevertheless, ifH0 is the matrix containing theN+2M�

4K central rows ofHT , we can state that

H
0
H = [0(N+2M�4K)�2K IN+2M�4K 0(N+2M�4K)�2K]: (1)



We defineK = L=2� 1 andp as the first even number such that
p � K: if K is even,p = K and ifK is odd,p = K + 1 . Let us
finally split Hp�(p+L�2) into three submatrices:Hp�(p+2K) =
[Dp�K Ep�p Fp�K]. D andF are, respectively, upper and
lower block-triangular matrices, andE is block Toeplitz. They will
be useful for describing any matrixHm�(m+L�2) (if m � 2p) in
the following way:

"
Dp�K Ep�p Fp�K 0p�(N�p)

0(m�2p)�p H(m�2p)�(m+2(K�p)) 0(m�2p)�p
0p�(N�p) Dp�K Ep�p Fp�K

#
: (2)

3. THE PERFECT RECONSTRUCTION PROBLEM

We are interested in finding which is the minimum numberM of
extra samples such that we can recover the original signalx from
ye = H(N+2M�2K)�(N+2M)xe. If we left multiply ye by H0

and remind (1), we obtainH0ye = H0Hxe = xP , wherexP
contains theN+2M�4K central components ofxe. This means
that we can perfectly reconstruct at least theN+2M�4K central
components ofx.

Then, the first idea is to takeM = 2K, so that we can perfec-
tly reconstruct the whole vectorx = xP . This leads to a length
N+4K extended signalxe, which, after being analyzed, results in
aN+2K length vectorye. So we have to work withN+2K sub-
band samples, that is, we are dealing with an expansionist trans-
form. In other words, by applying a lengthL 2-channel parauni-
tary filter bank to a finite signal, we would need to constructxe
by addingL � 2 extra samples per border to achieve perfect re-
construction. We will show that for many kinds of extensions, it
is possible to reduce this quantity toK = L=2 � 1 extra samples
and, consequently, to work with non-expansionist transforms.

Let us takeM = K and consider an arbitrary linear exten-
sion ofx, xe. The transform vectorye =HN�(N+2K)xe = Gx

andx have the same lengthN , sox can be perfectly reconstructed
fromye if and only if the square transformation matrixG is inver-
tible. Under this condition, the transformation is non-expansionist.
MatricesG representthe transformations of every linear extension
of a finite signal based onHN�(N+2K). Next we find its general
expression.

If N � 2K, we denotex = [xTa x
T
c x

T
b ]
T , wherexa andxb

contain, respectively, the first and lastK components ofx, andxc
the remaining central ones. Let us also writeCl = [Cl;aCl;cCl;b]
andCr = [Cr;aCr;cCr;b], whereCl;a;Cl;b;Cr;a;Cr;b are square
submatrices ofK order. Left and right extensions can now be writ-
ten asxl = Cl;axa + Cl;cxc + Cl;bxb andxr = Cr;axa +
Cr;cxc +C

r;bxb:
Now, using (2) form = N , we perform the block product

G = HN�(N+2K)

2
6664
Cl;a Cl;c Cl;b

IK 0K�(N�2K) 0K
0K IN�2K 0K
0K 0K�(N�2K) IK

Cr;a Cr;c Cr;b

3
7775 ;

if K is even, wheneverN � 3K, we obtain

G =

"
DCl;a +E DCl;c + [F 0K�(N�3K)] DCl;b

H(N�2K)�N

FCr;a FCr;c + [0K�(N�3K) D] E +FCr;b

#
:

We will show that that invertibility ofG is independent of
Cl;c andCr;c; so we can consider them as null matrices. In ot-
her words, we will assume that the left and right extensions ofxe
depend on the initial and final portions of the original signal. In
this way, we get the simplest general expression ofG, for all K
wheneverN � 3K:

G =

"
[DCl;a 0p�(p�K)] + E F 0p�(N�2K�p) DC

l;b

0(N�2p)�(p�K) H(N�2p)�N 0(N�2p)�(p�K)

FCr;a 0p�(N�2K�p) D E+ [0p�(p�K) FC
r;b]

#
:(3)

3.1. Classification of Linear Extensions of Finite Signals

In this section we will study all kinds of linear extensions with
their associate matricesG. We classify them incircular andnon-
circular extensions. We say that a extension is non-circular when
the extra samples added at each border of the original signal de-
pend only on theK samples of thesameborder. That is, when
Cl;b andCr;a are null matrices. The remaining ones are circular
extensions. Among non-circular extensions, we consider predic-
tive and non-predictive ones.

3.1.1. Predictive Non-circular Extensions

For this kind of extensions, extra samples are recursively defi-
ned asa fixed linear combinationof the original signal. That is,
there exist linear prediction coefficientsc1; c2; : : : ; cK related to
xa, and each new sample ofxl is built from theK samples on
its right through the combination:xl(j) =

PK�j�1

n=1
cnxl(j +

n) +
Pj

n=0
cK�j+nxa(n), j = 0; : : : ;K � 1: In the same

way, fromxb, we define each sample ofxr by linear prediction
over its leftK samples, with coefficientsc0K; c

0

(K�1); : : : ; c
0

1: for
everyj = 0; : : : ;K � 1,

xr(j) =

K�j�1X
n=0

c0K�nxb(j + n) +

j�1X
n=0

c0j�nxr(n):

This is a linear extension since it can be easily shown that
xl = CKxa andxr = C0Kxb, whereC andC0 are the Frobenius
matrices:

C =

�
c1 : : : : : : cK
IK�1 0(K�1)�1

�
; C0 =

�
0(K�1)�1 IK�1
c0K : : : : : : c01

�
:

Finally, we substitute in (3) and obtain the matrixGl associated to
the predictive linear extension; now we write it for evenK (hence
p = K):

Gl =

"
DCK + E F 0K�(N�2K)

H(N�2K)�N

0K�(N�2K) D E+FC0K

#
:

To conclude this subsection we will analyze two interesting
examples of this kind of extensions: the classical zero padding
and polynomial extension.



3.1.2. Zero Padding

It consists of adding null samples at each border of signalx; that
is,xl andxr are null vectors. It can be considered as a predictive
extension whose prediction coefficients are all equal to zero. In
this case,Cl = Cr = 02K�N and the associated transformation
matrixG0 contains only theN central columns ofHN�(N+2K).
It is also a block Toeplitz matrix; ifK is even it adopts the follo-
wing expression:2
6666666666664

AK=2 AK=2�1 : : : A0 0 : : : 0

AK=2+1 AK=2 AK=2�1 : : : A0

. ..
...

...
. ..

. .. : : : : : :
. ..

...

AK AK�1 : : : : : : : : : A0

. ..

0 AK

. .. : : : : : : : : :
. ..

...
. ..

. .. : : : : : :
. ..

...
0 : : : 0 AK : : : : : : AK=2

3
7777777777775
;

and if K is odd, its Toeplitz blocks are mixed versions of these
ones. Let us finally remind that the main drawback of zero pad-
ding is the generation of artificial high frequencies in the transform
vector. A solution to this problem is to consider “smooth” exten-
sions such as that presented in the following section.

3.1.3. Polynomial Extension

Algebraic manipulations guarantee the existence and uniqueness
of a degreed < K polynomial that passes through theK samples
of xa. Hence, we setxl as the values taken by this polynomial on
theK points on the left ofx; similarly, we constructxr from the
values ofxb. Now xe is the polynomial extension ofx. We can
see, using the theory of finite differences, that this is in fact another
example of linear predictive extension, whose coefficients are

cj = c0j =

�
(�1)(j+1)

�
d+1
j

�
if 1 � j � d+ 1

0 if d+ 2 � j � K;

so we can write the transformation matrix associated to this exten-
sion as a particular case ofGl.

Going back to the smoothness concept, we have to remind that
this depends on the numbern of vanishing moments ofh. In fact,
transform vectors of polynomials up to degreen�1 do not present
high frequencies components: they are considered smooth func-
tions. Hence, after polynomial extension (of degreed � K � 1),
any signal will keep its smoothness whenevern � K. For ins-
tance, lengthL Daubechies filters haven = L=2 = K + 1 va-
nishing moments; this means that with these filters, polynomial
extension is always a smooth extension.

3.1.4. Non-predictive Non-circular Linear Extensions

As an outstanding example of infinite non-circular linear exten-
sions we must analyze the classical symmetric extension. In this
casexl = PKxa andxr = PKxb, wherePK is the permutation
matrix with 1’s on the antidiagonal. The transformation matrix
associated to symmetric extension is, for evenK,

Gs =

"
DPK +E F 0K�(N�2K)

H(N�2K)�N

0K�(N�2K) D E+ FPK

#
:

3.1.5. Circular Extensions

In this group we find all kind of extensions wheneverCl;a orCr;b

are not null matrices. We consider two examples; the first one
leads to the famous periodic extension.

� Periodic extension:in this case we takexl = xb andxr =
xa. Hence,Cl;b = Cr;a = IK andCl;a = Cr;b = 0K .
The associated matrixGper is, for anyK:"

E F 0p�(N�2K�p) D

0(N�2p)�(p�K) H(N�2p)�N 0(N�2p)�(p�K)

F 0p�(N�2K�p) D E

#
:

It is a block circulant orthogonal matrix, because its rows
contains the even shifts of the orthogonal filters. Hence, the
transformation is always invertible; however this extension
may lead again to artificial high frequencies.

� Smooth circular extension:If we desire the periodization
process not to introduce discontinuities in xe, we can ex-
tend the signal before periodization in the following way:
we would like to definexr ; xl so that the signal
[xTb ; xTr ; xTl ; xTa ] is smooth enough. From the last
samples ofxb and the first ones ofxa, we can construct it
through polynomial interpolation. And this is a linear pro-
cess which involves bothxa andxb for each border, that is,
a circular linear extension. If we are not going to periodize
afterwards, it is better to apply the matrixG associated to
polynomial extension directly.

3.2. Invertibility of the Transformation

Considering the cases analyzed in the previous section, we can
only guarantee the invertibility of the orthogonal matrix associated
to periodic extension. Next we give necessary and sufficient condi-
tions forG to have an inverse. It is equivalent to be able to perfec-
tly reconstructx from ye = Gx. We remind that left multiplying
ye byH0, we obtain theN � 2K central samples ofx, that is,xc.
In order to determinexa; xb from G[xTa ; x

T
c ; x

T
b ]

T = ye, we
rearrange this linear system by moving the known vectorxc to the
right side, and using (3) it becomes

S

�
xa
xb

�
=

2
64

DCl;a + E� DCl;b

0p�(p�K) D� 0p�K
0p�K �F 0p�(p�K)

FCr;a �E+FCr;b

3
75
�
xa
xb

�
= y

0:

In this new linear system we have denoted asA� (respectively�A)
the submatrix ofA constructed from its first (respectively last)K
columns. IfK is even, then the asterisk may be omitted. Indepen-
dently ofy0, the solution is unique if and only if the columns of
the system matrixS are linearly independent. In that case, multi-
plying by the pseudoinverse gives backxa; xb. We have obtained
the following result:

Proposition 1G has an inverse if and only if its submatrixS
has maximum rank (2K) .

Thus, we have given a characterization of regular matricesG.
Besides, this condition is independent of the extension matrices
Cl;c; Cr;c. Moreover, under this assumption, we have described a
practical synthesis algorithm forx from ye. In our work, we have
also found other characterizations, for instance:

Proposition 2G is regular if and only if there exists any solu-
tionX to the following matrix equation:



SX =

"
D 0p�K

02p�K 02p�K
0p�K F

#
:

4. EXAMPLE

We have considered Daubechies filters of length 10, and have built
matricesG corresponding to the polynomial and periodic exten-
sion. Figure 1 shows the three subband of a cubic finite signal:
smooth polynomial extension (Figure 1(a)) presents the best per-
formance on the subbands; on the other hand, periodic extension
(Figure 1(b)) introduces discontinuities which create spurious fre-
quencies in every subband; this is important when studying the ef-
fects of quantization errors. Figure 2 shows reconstruction errors
for these signals after multiplying by the corresponding inverse
matrix , (b) and (d), or using the reconstruction algorithm propo-
sed in the previous section, (a) and (c). We have also tested Daube-
chies filters up to length 34: we conclude that such inverses exist
for all the types of extensions studied in this paper.
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Figure 1: Subband transforms of a cubic signal after: (a) polyno-
mial extension and (b) periodic extension.

5. CONCLUSIONS

We have introduced the general formulation of the subbandproces-
sing of an extended finite length signal. New conditions for non-
expansionist invertible transforms have been given, and practical
examples were shown. Current research is being oriented to the
general demonstration of invertibility ofeach one of those trans-
forms regardless the filter bank, and the design of new subband
transforms of finite signals with improved properties. Further work
can also deal with the study of the effects of quantization errors on
the reconstruction of the finite signal.
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Figure 2: Signal reconstruction errors for the cubic finite signal
using: (a) polynomial extension and proposed reconstruction al-
gorithm; (b) polynomial extension and multiplication by inverse
matrix; (c) periodization and proposed reconstruction algorithm
and (d) periodization and multiplication by inverse matrix.
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[6] N. González Prelcic, Ph. D. Thesis: “Descomposiciones
Tiempo-Frecuencia Adaptativas basadas en Wavelets”, Depar-
tamento de Tecnolog`ıas de las Comunicaciones, Universidad
de Vigo, 1998.

[7] R. L. de Queiroz, “Subband processing of finite-length signals
without border distortions”, Proceedings ICASSP, Vol. IV, pp.
613-616, 1992.

[8] R. L. de Queiroz, K. R. Rao, “ On reconstruction methods for
processing finite-length signals with paraunitary filter banks”,
IEEE Transactions on Signal Processing, Vol.43, pp. 2407-
2410, Oct. 1995.


