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ABSTRACT (H = H,,x»). The Nth order null and identity matrices are repre-

In this paper we introduce a novel and general matrix formula- sented byd » andIyrespectively. Let us consider a finite sigmal
tion of classical signal extension methods for subband processingof even lengthV, x = [#(0) o (1), - (N — 1T, We define
of finite length signals. Considering a paraunitary 2-channel fil- & extension ok asx. = [x;,x",x,]". This extension is linear
ter bank as transformation cell, this new characterization makes itif x; andx, depend linearly orx, that is, if there exist matrices
possible to show that perfect reconstruction of finite signals can beCi, Cr such thate; = Cix andx, = C,x. If both x; andx,
ensured without resorting to extra subband samples; thus, by usind1ave length}/, the extended vector has length+ 23/ and can
some traditional signal extension methods, non-expansionisttransbe expressed as. = [C]. Iy, CT]"x.
forms can be defined. Some of these transformations are analyzed In addition, we consider the paraunitary filter bank given by

to illustrate our theoretical results. the low pass filteh = [R(0), h(1), - -, h(L —1)] (of even length
L > 2) and the associated high pass fiter [—h(L—1),h(L —
1. INTRODUCTION 2),- -+, —h(1), h(0)]. We build the matrixt,,,  (m+ L —2), Whose

m rows contain the filters, adding zeros when necessary. For the

Itis well known that border distortions appear when reconstructing S2Ke Of simplicity, we will write the,, « (,+ 1.2 block Toeplitz
finite length signals after being analyzed with any paraunitary FIR form [5, €] as:
filterbank. To remove this effect two different approaches have o A Ay 0 0
been pointed out by different authors: (a) artificial expansion of 0 Ax  Ax_i ... Ao 0 0
the finite signal before the analysis stage [1, 2, 7, 8]; (b) design of
border filters or wavelets on the interval [5, 4]. These may be mer- . . A, . . :
ged into a single approach [6], since the first class of methodslead | 0o L ... 0 Axr Ax_: ... A
to the construction of a special type of border filters. Despite these
advances on the study of the solutions to this undesired effect, wewhere0 = 02 -, K = /2 — 1 and
have observed some unsolved questions:
1. The non-existence of a general formulation for all extension A, = h(27 + 1) h(2s) vi=0,..., K.
methods; classical extensions such as zero padding, perio- —h(L=2j=2) h(L=-2j-1)
dic and symmetric extensions seem not to be related to each
other.

2. Exceptfor periodic extension and symmetric extension with

We setm = N + 2M — L + 2 and define the transformation

Ve = H(ni2m—ry2)x (420 %e. This amounts to processing
- ) . 0 x. by means of the analysis filter bank given hyandg, only
Imea_r phase filters, all thes_e_ exter_15|ons are expansmnl_st,retaining theN + 2M — L + 2 central output samples. The whole
that is, there are more_c_oefflc_lents in the transform domain transformation of the original signal can be expressed gs =
than samples in the original signal. Gx, where the transformation matrix is

In this paper, we introduce a novel formulation that, in con-

tradiction to the result in [8], proves [3] that not every extension

lead to a non-expansionist transform; however, as we will show, G = H(yiom—L42)x(N42M)

there exist some classical extensions that can be re-formulated as

the formulation, we presentthe conditions over the transformation

matrix to guarantee that, after signal extension, expansion is not

necessary.
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H=Huwom—r12)x(N420)-

It has orthonormal rows (notcolumns), BT = Ixyom_ox #
2. PRELIMINARIES AND NOTATION HTH. Nevertheless, i’ is the matrix containing th&/ +2M —

4K central rows ofI”, we can state that
Throughout this paper, vectors are denoted by lower case bold let-
ters ) and matrices by upper case bold letters, fixing their size H'H = [0(nt2n0s—ar) 2 INvons—are O(wqons—aryxax]. (1)



We define/l = L/2 — 1 andp as the first even number such that
p> K:if Kisevenp= K andif Kisodd,p = K + 1. Letus
finally split H,, (1 L—2) into three submatriced .y (p42x) =
[Dyxx Epxp Fpxx]. D andF are, respectively, upper and
lower block-triangular matrices, af&lis block Toeplitz. They will
be useful for describing any matri,,, » (14 12 (if m > 2p)in
the following way:

Dpr Epo prK OpX(N—p)
0(m—2p) Xp H(m—2p)><(m+2(I\"—p)) 0(m—2p) Xp . (2)
OpX(N—p) Dpr pXp px K

3. THE PERFECT RECONSTRUCTION PROBLEM

We are interested in finding which is the minimum numbérof
extra samples such that we can recover the original sigrfi@m
Ye = Hinyam—ax) x(v+2m)Xe. If we left multiply y. by H'
and remind (1), we obtaill’y. = H'Hx. = xp, wherexp
contains theV 4+ 2M — 4K central components of.. This means
that we can perfectly reconstruct at leastihe- 2M — 4K central
components of.

Then, the first idea is to takel = 2, so that we can perfec-
tly reconstruct the whole vector = xp. This leads to a length
N+4K extended signat., which, after being analyzed, results in
aN +2K length vectoy.. So we have to work witv +2 K sub-

We will show that that invertibility ofG is independent of
Ch¢ andC™*; so we can consider them as null matrices. In ot-
her words, we will assume that the left and right extensions.of
depend on the initial and final portions of the original signal. In
this way, we get the simplest general expressioofor all i
wheneverlV > 3K:

[DC"* 0, (p—1)] + E F 0y (v—2i—p) DC*
0(n—2p) x (p— 1) H(v—2p)x ¥ O(n—2p) x(p—K)

FC™® 0,4 (v—2r—p) D E+4 [0, (p—r) FC]

G= .3)

3.1. Classification of Linear Extensions of Finite Signals

In this section we will study all kinds of linear extensions with
their associate matric&s. We classify them ircircular andnon-
circular extensionsWe say that a extension is non-circular when
the extra samples added at each border of the original signal de-
pend only on thei samples of thesameborder. That is, when
C"* andC"™* are null matrices. The remaining ones are circular
extensions. Among non-circular extensions, we consider predic-
tive and non-predictive ones.

3.1.1. Predictive Non-circular Extensions

form. In other words, by applying a length 2-channel parauni-
tary filter bank to a finite signal, we would need to construct
by addingl. — 2 extra samples per border to achieve perfect re-
construction. We will show that for many kinds of extensions, it
is possible to reduce this quantity i6 = L/2 — 1 extra samples
and, consequently, to work with non-expansionist transforms.

Let us takeM = K and consider an arbitrary linear exten-
sion ofx, x.. The transform vectoy. = Hy x(v42m)%Xe = GX
andx have the same lengtli, sox can be perfectly reconstructed
fromy. if and only if the square transformation matfiis inver-
tible. Under this condition, the transformation is non-expansionist.
MatricesG representthe transformations of every linear extension
of a finite signal based oH x (v 42x). Next we find its general
expression.

If N > 2K, we denotex = [x2 x! x{]7, wherex, andx,
contain, respectively, the first and ldstcomponents ok, andx.
the remaining central ones. Let us also wfite= [C"*Ch°C"?]
andC, = [C"*C"¢C"?], whereC"®, C"* C™* C™* are square
submatrices ofC order. Left and right extensions can now be writ-
ten asx; = Ch%, + C'°x, + Cl’x, andx, = C™%x, +
Cx,. + C"bx,.

Now, using (2) form = N, we perform the block product

Cl,a Cl,c Cl,b
Ix  Orxv—2r) Ox
G =Hyy(vt2r) | Ox In_2x 0x |;
0x  Owxxv-2rxy Ik
cne Cnre Cr,b
if K is even, whenevel > 3K, we obtain
DC"* + E DC"* 4 [F Oy (y—2r)] DC"

G = Hxy_oxyxn

FC™ + [0k y(v—3x) D] E+ FC™?

Fcr,a

ned asa fixed linear combinatioof the original signal. That is,
there exist linear prediction coefficients, c2, . .., cx related to
x4, and each new sample ef is built from the X' samples on
its right through the combinationz(5) = > 77~ caai(j +
n)+ ) _cx—jtnwa(n), j =0,...,K — 1. Inthe same
way, from z;, we define each sample of by linear prediction
over its left X samples, with coefficients;, ch_l), ...,cy: for
every; =0,..., K —1,

K—j5-—1

2

n=0

()

g—1
i _nwu(§ 4+ n) + Z c;_nxr(n).
n=0

This is a linear extension since it can be easily shown that
x; = C¥x, andx, = C'%x;, whereC andC' are the Frobenius

matrices:
] C/ - [

Finally, we substitute in (3) and obtain the ma#x associated to
the predictive linear extension; now we write it for evBn(hence
p=K):

. CK

Ox—nx1 Iw—
Ox—1)x1 ; ’

!
Crew - e

DCK¥+E F O x(N—2F)
Hxy_oxyxn i
Opx(v—2ry D E+ FC'F

G =

To conclude this subsection we will analyze two interesting
examples of this kind of extensions: the classical zero padding
and polynomial extension.



3.1.2. Zero Padding 3.1.5. Circular Extensions

It consists of adding null samples at each border of sign#hat In this group we find all kind of extensions whene@r® or C"*

is, x; andx, are null vectors. It can be considered as a predictive are not null matrices. We consider two examples; the first one
extension whose prediction coefficients are all equal to zero. In leads to the famous periodic extension.

this caseC; = C, = O2xxv and the associated transformation e Periodic extensionin this case we take; = x; andx, =
mgtrlx Gy contains onl_y theV (_:en_trgllcolumn_s OH iy (N 2K)- x.. Hence Cl* = C* = I andCh® = C™° = 0.

It is also a block Toeplitz matrix; if{ is even it adopts the follo-

h - The associated matrig .. is, for any i
wing expression:

i E F o D
A,( A,( _ A 0 0 PX(N—2K—p)
e e ’ Ov—2p)x(p—r) Hw-2p)xy O(N—2p)x(p—K)

Agpy Ay Agpa .. Ag F Opxv2x—p D E

It is a block circulant orthogonal matrix, because its rows

. contains the even shifts of the orthogonal filters. Hence, the

Agx A e Ao r ’ transformation is always invertible; however this extension
0 Ax may lead again to artificial high frequencies.

¢ Smooth circular extensionif we desire the periodization

: . . : process not to introduce discontities in x., we can ex-

0 0 Arx ... ... Agp | tend the signal before periodization in the following way:
we would like to definex,, x; so that the signal
xf, xF, x7, xI]is smooth enough. From the last
samples ok, and the first ones af,, we can construct it
through polynomial interpolation. And this is a linear pro-
cess which involves bothk,, andx; for each border, that is,
a circular linear extension. If we are not going to periodize
. . afterwards, it is better to apply the mat& associated to
3.1.3. Polynomial Extension polynomial extension directly.

Algebraic manipulations guarantee the existence and uniqueness

of adegreel < K polynomial that passes through thesamples 3.2. Invertibility of the Transformation
of x,. Hence, we set; as the values taken by this polynomial on
the K points on the left ok; similarly, we construck, from the
values ofx;. Now x. is the polynomial extension of. We can
see, using the theory of finite differences, that this is in fact another
example of linear predictive extension, whose coefficients are

and if i is odd, its Toefitz blocks are mixed versions of these
ones. Let us finally remind that the main drawback of zero pad-
ding is the generation of artificial high frequencies in the transform
vector. A solution to this problem is to consider “smooth” exten-
sions such as that presented in the following section.

Considering the cases analyzed in the previous section, we can
only guarantee the invertibility of the twdgonal matrix associated
to periodic extension. Next we give necessary and sufficient condi-
tions forG to have an inverse. It is equivalentto be able to perfec-
tly reconstruck fromy. = Gx. We remind that left multiplying
, (=1)6tD) <d+1) if 1<j<d+1 y. byH’, we obtai_n theV — 2K central samples of, that is x..

0 ’ it dr2<j<K: In order to determine,, x, from G[xI, x7, x71T = y., we

- rearrange this linear system by moving the known vextao the

so we can write the transformation matrix associated to this exten-right side, and using (3) it becomes
sion as a particular case 6f;.

Going backto the smoothness concept, we have to remind that DC"* + Ex DCh*
this depends on the numbeiof vanishing moments di. In fact, g| X« | = 05 (p—x) D Opxr Xa | _ ¥’
transform vectors of polynomials up to degree 1 do not present Xt Opx i *F 0py (p—r) Xb ’
high frequencies components: they are considered smooth func- FCHe «E 4+ FC™?
tions. Hence, after polynomial extension (of degie€ K — 1), ) ) .
any signal will keep its smoothness whenewep K. Forins-  Inthis newlinear systemwe have denotedagrespectively-A)
tance, length’. Daubechies filters have = L/2 = K + 1 va- the submatrlglotlx constructed from its first (respectively lagf)
nishing moments; this means that with these filters, polynomial columns. IfK is even, then the asterisk may be omitted. Indepen-
extension is always a smooth extension. dently ofy’, the solution is unique if and only if the columns of

the system matri8 are linearly independent. In that case, multi-
plying by the pseudoinverse gives back x;. We have obtained

3.1.4. Non-predictive Non-circular Linear Extensions the following result:

As an outstanding example of infinite non-circular linear exten- Proposition 1 G has an inverse if and only if its submat®x
sions we must analyze the classical symmetric extension. In thishas maximum rank () .
casex; = Pxx, andx, = Pxxs, whereP x is the permutation Thus, we have given a characterization of regular matges
matrix with 1's on the antidiagonal. The transformation matrix Besides, this condition is independent of the extension matrices
associated to symmetric extension is, for e¥&n Ch¢, C™©. Moreover, under this assumption, we have described a
practical synthesis algorithm for from y.. In our work, we have
DPr+E F Oxxw-2r) also found other characterizations, for instance:
G = Hwv—2r)xw : Proposition 2 G is regular if and only if there exists any solu-

Oxxv—2r) D E+FPx tion X to the following matrix equation:



x 10 x 10"

5 2
D 0pxrc 0 0
SX = | O2pxr  O2pxx -5 R
Opxx F -10
-15 -4
4. EXAMPLE 2% 100 200 300 o 100 200 300
@ (b)
We have considered Daubechies filters of length 10, and have built 32" g X107
matricesG corresponding to the polynomial and periodic exten- )
sion. Figure 1 shows the three subband of a cubic finite signal: o
smooth polynomial extension (Figure 1(a)) presents the best per- 1
formance on the subbands; on the other hand, periodic extensior 4
(Figure 1(b)) introduces discontinuities which create spurious fre- s
qguencies in every subband,; this is important when studying the ef- -
fects of quantization errors. Figure 2 shows reconstruction errors -2, o0 200 300 -10 o 200 200
for these signals after multiplying by the compesding inverse (© C)

matrix , (b) and (d), or using the reconstruction algorithm propo-

sed in the previous section, (a) and (c). We have also tested DaubeFigure 2: Signal reconstruction errors for the cubic finite signal

chies filters up to length 34. we conclude that such inverses existusing: (a) polynomial extension and proposed reconstruction al-

for all the types of extensions studied in this paper. gorithm; (b) polynomial extension and ttiplication by inverse
matrix; (c) periodization and proposed reconstruction algorithm

400 and (d) periodization and multiplication by inverse matrix.
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