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ABSTRACT

We describe a new method for blind system identification that
uses the cross relation properties between two or more sensor sig-
nals to estimate the impulse responsesof the channels. The method
performs as well or better than other similar blind identification tech-
niques under noisy and ill-conditioned channel conditions, and is
computationally simpler to implement.

1. INTRODUCTION

In most applications, the degradation of the signal causedby a prop-
agation channel is not acceptable. Traditionally, a known pilot or
training signal is sent through the channel to identify it and correct
or equalize it. However, in many cases, the use of such a training
signal is not possible.

Blind identification and equalization techniques that do not re-
quire training signals have been proposed. In an early paper, Sato
[1] presented such a technique and performed channel equalization
directly. Blind equalization of non-minimum phasechannels,which
cannot be inverted, led to first considering channel identification
before performing equalization. Schemes for blind system identifi-
cation that use higher order statistics have been proposed [2]. Most
such methods require long segments of data to identify the channel
and therefore are unattractive for fast equalization.

Using only second-order statistics for channel identification was
first proposed in [3]. These techniques require observations from
two or more sensors or, equivalently, the oversampling of a single
observation. Several such algorithms have been reported [4]-[6].

This paperpresents a new blind system identification technique
that uses only second order statistics. The method proposed ex-
ploits the linear relationships between the observations of multiple
sensors as in [4], but since it does not require an eigenvalue decom-
position, it is less complex and more attractive computationally.
More importantly, this new method outperforms and is more robust
than previous methods under very noisy and ill-conditioned obser-
vations. We demonstrate significantly improved performance, as
compared to similar techniques, for a two sensor well-conditioned
system, a two sensor ill-conditioned system, and a three sensor sys-
tem with random channels. The simulation results show a reduc-
tion of up to 5 dB in mean squared error for SNR ranging from 0
to 25 dB.

2. PROBLEM STATEMENT

Consider the multi-channel FIR system of Fig.1. The objective is
to estimate the channels’ responseshm given a known input signal
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Figure 1: Multi-channel FIR system.

s(n) and M (M � 2) noisy observations xm(n). The mth obser-
vation sequence xm(n) is written as:

xm(n) = Hms(n) + bm(n); (1)

where

xm(n) =
�
xm(n) xm(n� 1) � � � xm(n� L+ 1)

�T
;

bm(n) =
�
bm(n) bm(n� 1) � � � bm(n� L+ 1)

�T
;

s(n) =
�
s(n) s(n� 1) � � � s(n� 2L + 2)

�T
;

and

Hm =

2
4

hm;0 � � � hm;L�1 � � � 0
...

. . .
...

. . .
...

0 � � � hm;0 � � � hm;L�1

3
5 :

The observation noise bm(n) is assumedto be uncorrelated with
the source signal s(n). The parameter matrix Hm is a [L; 2L� 1]
matrix constructed from the vector:

hm(n) =
�
hm;0 hm;1 � � � hm;L�1

�T
;

which is the impulse response corresponding to the mth channel.
In the present paper this vector is assumed to be of lengthL, which
without loss of generality we set to the length of the longest channel
impulse response.

Now, the global system response can be written as:

x(n) = Hs(n) + b(n); (2)



with

x(n) =
�

xT1 (n) � � � xTM (n)
�T

;

b(n) =
�

bT1 (n) � � � bTM (n)
�T

;

and

H =
�

HT
1 � � � HT

M

�T
:

The blind system identification technique presented in this pa-
per belongs to a class of techniques that are based on the correlation
between sensor outputs [4]-[6]. This correlation can be expressed
as:

Rxx = HRssHT + Rbb; (3)

where

Rxx = Efx(n)xT (n)g;

Rbb = Efb(n)bT (n)g;

Rss = Efs(n)sT (n)g;

andEf�g denotes mathematical expectation. Rxx is the covariance
matrix of the observation, and the signal and noise covariance ma-
trices are Rss and Rbb respectively. Note that Rss has dimension
[2L� 1; 2L � 1] whereas Rxx and Rbb are [ML;ML].

In the absence of noise, the assumptions under which the pa-
rameter matrix H can be identified (up to a constant scalar) and
which are assumed to hold throughout the rest of this paper are the
following [3]:

1. The parameter matrix H is of full column rank. This implies
that the channels do not share common zeros.

2. The autocorrelation matrix Rss is of full rank.

3. THE COMPONENT NORMALIZATION METHOD

Although our interest is in the real situation where noise is present,
we will use the noise free condition to develop the new approach
which we call Component Normalization. Then we apply it to the
noisy situation using a least squares formulation.

3.1. Noise-free Observations

The method is based on the following linear relationships between
the sensor outputs [4]:

xTi (n)hj = xTj (n)hi; i; j = 1; 2; :::;M; i 6= j: (4)

These linear relations follow from the fact that xi = s � hi, and
thus xi � hj = s � hi � hj = xj � hi (the � symbol is the linear
convolution operator). If we pre-multiply (4) by xi(n) and take the
expectation we get a set of M(M � 1) relations of the form:

Rxi;xihj = Rxi ;xjhi; i; j = 1; 2; :::;M; i 6= j: (5)

The set of equations described by (5) can be arranged in the follow-
ing form that reduces the number of equations from M(M � 1) to
M [4]:

Rh = 0; (6)

where

R =

2
664

P
i6=1

Rxi;xi �Rx2 ;x1 � � � �RxM ;x1

�Rx1;x2

P
i6=2

Rxi ;xi � � �

...
. . .

...
�Rx1 ;xM � � �

P
i6=M

Rxi;xi

3
775 ;

and

h =
�

hT1 hT2 � � � hTM
�T

:

Equation (6) has to be solved for the unknown h. Note that in
contrast to the cross-relation (CR) method proposed in [4] we work
with the covariance matrix rather than operating directly on the ob-
served data.

Since the vector h is different from zero (the trivial solution),
the [ML;ML]matrix R is rank deficient. The rank of R isML�1,
which is the condition for unique channel identifiability in [5]. This
condition is required for (6) to have a unique solution and is a con-
sequence of the identifiability conditions previously listed. Now
we choose an element of the vector h which is known to be non-
zero, say, hm;k = �. If we denote the column of R corresponding
to that element as

r = E

8>>>>><
>>>>>:

2
666664

�xm(n)x1(n� k)
...P

i6=m
xi(n)xi(n � k)

...
�xm(n)xM (n� k)

3
777775

9>>>>>=
>>>>>;

; (7)

we can write (6) as:
~R~h = ��r; (8)

with the following definitions. The matrix ~R =

2
66666664

P
i6=1

Rxi;xi � � � �Rxm ;~x1 � � � �RxM ;x1

�Rx1 ;x2 � � � �Rxm ;~x2 � � � �RxM ;x2

...
. . .

...
...

�Rx1;xm

P
i6=m

Rxi;~xi � � � � � �

... � � �

. . .
�Rx1 ;xM �Rxm ;~xM � � �

P
i6=M

Rxi ;xi

3
77777775

is of size [ML;ML � 1], where

Rxi;~xj = Efxi(n)~x
T
j (n)g

is an [L;L�1]matrix and~indicates that we have removed the kth
element from the corresponding vector. Vector ~h is of sizeML�1
and it is constructed from h by removing only the kth element from
hm:

~h =
�

hT1 hT2 � � � ~h
T

m � � � hTM
�T

: (9)

If we arbitrarily set � = 1 and solve the set of equations rep-
resented by (8) we obtain the component normalized impulse re-
sponses of the multi-channel FIR system. We see that (8) can be
solved analytically by removing any row from ~R and inverting the
resulting square matrix. Since the system is overdetermined we
could use the least squares (LS) pseudoinverse instead, but given
that there is no noise, the solution would be the same, i.e. the unique
solution (up to the arbitrary scalar factor �).



3.2. Noisy Observations

In the noisy case, the relationships (5) (8) no longer hold and the
error term now becomes:

e = �r+ ~R~h: (10)

Under noisy conditions we minimize (in the LS sense) a cost func-
tion that depends on the error (10):

min
~h

eT e (11)

which has the following solution:

~h = ��(~R
T ~R)�1 ~R

T
r: (12)

Note that (11) is equivalent to

min
h

hTRTRh (13)

subject to the constraint hm;k = �, whereas in the CR method [4]
the minimization problem is

min
h

hT Rh (14)

subject to various constraints. For k h k= 1, (14) leads to a solu-
tion that is the eigenvectorof R corresponding to its smallest eigen-
value. Another constraint proposed in [4] is cTh = 1, where c
is a constant vector. For the special case c = [0; :::;1=�; :::;0]T

with 1=� being the kth element of c, this constraint is equivalent
to hm;k = � which follows an error criterion similar to our formu-
lation. However, we found solutions based on (14) to be somewhat
less robust to noise than our method, especially in high noise con-
ditions and as the number of channels increases; we obtained the
best results, in all cases, with the proposed criterion (11).

It may seem somewhat arbitrary to minimize the error in (10)
which involves least-squares fitting of statistical quantities that de-
rive from idealized models. However, this approach can be further
justified from another viewpoint stemming from linear estimation
theory. The presenceof noise causesunbalanceon the relationships
(4). According to the orthogonality principle this error is to be un-
correlated with the data vectors, and its minimization in the least
squares sense leads to the CR solution. In a similar way, noise in-
troduces unbalance on the relationships (5), which are used by the
Component Normalization method. The error in this case is to be
uncorrelated with the cross-correlations of the data vectors. If we
explicitly write the error (11) for M = 2 we get

e = �E

��
x2(n)
�x1(n)

�
x2(n� k)

�
+ (15)

�
Rx2 ;~x2 �Rx2 ;x1

�Rx1;~x2 Rx1 ;x1

� �
~h1

h2

�
; (16)

which we would like to set to zero. Because this is not possible, we
then try to at least minimize eT e, which is the essence of our error
criterion (11). This result applies for the general case M � 2 as
well.

4. SIMULATIONS

In this section we presenta set of simulations performed to evaluate
the least squares componentnormalization (LSCN) technique. The
simulations are in the context of digital communications where the
channel responses are short and the input sequences have flat spec-
tra. We use the two-channel simulation example in [7] to compare
our method to the CR method of [4]. Additionally, we evaluate the
LSCN and CR methods for the case of three-channel and sensors.
Unlike the simulations performed in [8], for three sensors we eval-
uate the two methods when the unknown channels are longer than
in the two-channel case.

4.1. Two Sensors

In [7] the following two-channel FIR system was considered:

h1 =
�
1 �2 cos(�) 1

�T
and

h2 =
�
1 �2 cos(� + �) 1

�T
;

where the parameter � controls the angular proximity between the
zeros of the channels. The source signal was a binary (�1; 1) se-
quence with white spectrum and unit power. The signal consisted
only of 30 samples and a different realization of noise (independent
on each channel) with a given power was added to the channel out-
puts for each of 100 runs of the simulation to obtain the desired
signal to noise ratio (SNR):

SNR = 10 log10
�2s k h k2

M�2

where �2s is the signal power (equal to 1 here) and �2 is the noise
power. Our performance measure is given by:

MSE = 20 log10

2
4 1

k h k

vuut 1

N

NX
i=1

k "(i) k2

3
5 ;

where N = 100 is the number of runs,

"(i) = h �
hT ĥ

(i)

ĥ
(i)T

ĥ
(i)

ĥ
(i)

is the normalized projection error, and ĥ
(i)

is the channel estimate
for the ith run. The above error measure reflects the fact that we are
only trying to estimate h to within an arbitrary scale factor; further
discussion on the philosophy of error measures in this context can
be found in [9].

For the two channel case we performed the following two sim-
ulations:

1. Well-conditioned channels (� = �=10 and � = �):
Noise was added at different SNR’s, from 5 � 50 dB and
the correspondingMSE of the estimates was computed. The
two methods, CR and LSCN, were used to estimate the chan-
nels.

2. Ill-conditioned channels (� = �=10 and � = �=10):
The same noise conditions as in the first simulations.

The results of these two cases are shown respectively in Figs. 2 and
3. We can see that the LSCN method outperforms the CR method at
high noise levels (low SNR) for an ill condition channel, while the
two methods give similar results when the channels are well con-
ditioned.



4.2. Three sensors

In this simulation we were primarily interested in looking at the
performance of the LSCN method when the channel length increases.
In a preliminary experiment, adding observations from additional
sensors was found to give more robust estimates of long channels
(128 taps) under noisy conditions. Another advantage of adding
sensors is that the first identifiability condition is more likely to hold.

We used three channels whose coefficients were randomly se-
lected. The channels were 15 taps long. The source signal was
generated in the same way as in the previous simulations but was
longer (120 samples) since the number of parameters to be deter-
mine is now larger. We added noise at different levels and com-
puted the MSE over N = 200 runs. The channel estimation was
done by both the CR and LSCN methods. In Fig.4 we plot the re-
sults for those conditions. The advantage of the LSCN over the CR
is again clear for a significant range in SNR.
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Figure 2: Comparison between LSCN and CR methods for the
well-conditioned channel case (� = �).
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Figure 3: Comparison between LSCN and CR methods for the ill-
conditioned channel case (� = �=10).

5. DISCUSSION AND CONCLUSION

For short channels as encountered in digital communications, the
new method is relatively simple to implement and performs as well
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Figure 4: Comparison between LSCN and CR for three random
channels.

or better than other recently proposed methods for fast blind iden-
tification. In spite of the similarity of the problem formulation with
other previous methods (all of which are based on the linear rela-
tionships between observations), the error and error minimization
criteria proposed are different and lead to more accurate results, es-
pecially at low SNR. With the addition of more sensors the LSCN
method becomes more robust to noise but at the expense of higher
complexity.
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