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ABSTRACT

We describe a new method for blind system identification that
uses the cross relation properties between two or more sensor sig-
nalsto estimate theimpulse responsesof the channels. Themethod
performsaswell or better than other similar blind identification tech-
niques under noisy and ill-conditioned channel conditions, and is
computationally simpler to implement.

1. INTRODUCTION

In most applications, the degradation of the signal caused by aprop-
agation channel is not acceptable. Traditionally, a known pilot or
training signal is sent through the channel to identify it and correct
or equalize it. However, in many cases, the use of such atraining
signal is not possible.

Blind identification and equalization techniquesthat do not re-
quire training signals have been proposed. In an early paper, Sato
[1] presented such atechniqueand performed channel equalization
directly. Blind equalization of non-minimum phasechannels, which
cannot be inverted, led to first considering channel identification
before performing equalization. Schemesfor blind systemidentifi-
cation that use higher order statistics havebeen proposed [2]. Most
such methods require long segments of datato identify the channel
and therefore are unattractive for fast equalization.

Using only second-order statisticsfor channel identificationwas
first proposed in [3]. These techniques require observations from
two or more sensorsor, equivalently, the oversampling of asingle
observation. Several such algorithms have been reported [4]-[6].

Thispaper presentsanew blind system identificationtechnique
that uses only second order statistics. The method proposed ex-
ploitsthe linear relationships between the observations of multiple
sensorsasin [4], but sinceit doesnot require an eigenvaluedecom-
position, it is less complex and more attractive computationally.
Moreimportantly, this new method outperforms and is more robust
than previous methods under very noisy and ill-conditioned obser-
vations. We demonstrate significantly improved performance, as
compared to similar techniques, for a two sensor well-conditioned
system, atwo sensor ill-conditioned system, and athree sensor sys-
tem with random channels. The simulation results show a reduc-
tion of up to 5 dB in mean squared error for SNR ranging from 0
to 25 dB.

2. PROBLEM STATEMENT

Consider the multi-channel FIR system of Fig.1. The objectiveis
to estimate the channels’ responses k. given aknowninput signal
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Figure 1: Multi-channel FIR system.

s(n)and M (M > 2) noisy observations ., (n). The mth obser-
vation sequence X, (n) is written as:

Xm(n) = HmS(n) 4+ bm(n), @
where

tm(n—L+1) ]T,

bn(n—L+1) |7,
T

Xm(n) = [ tm(n) Tm(n—1)
b (n) = [ bn(n) bm(n—1)

S(n) = [ s(n) s(n—1) s(n —2L +2) ] ,
and
hamo - hmi—1 0
Hm = : . :
0 e hm,O hm,L—l

Theobservationnoiseb,, (n) isassumedto be uncorrelated with
the source signal s(n). The parameter matrix H,,, isa[L, 2L — 1]
matrix constructed from the vector:

hm(n) = [ hmo  hma R, -1 ]T ,

which is the impulse response corresponding to the mth channel.
In the present paper this vector isassumed to be of length 7., which
without loss of generality we set to thelength of thelongest channel
impulse response.

Now, the global system response can be written as:

X(n) = Hs(n) 4 b(n), @



with

and

H=[ HT HE 7.

The blind system identification technique presented in this pa-
per belongsto a classof techniquesthat are based onthe correlation
between sensor outputs [4]-[6]. This correlation can be expressed
as:

Rez = HR::H" + Rus, ®

where

R,. = E{X(n)XT(n)},
Rbb = E{b(n)bT(n)},
Ree = E{S(n)ST(n)},

and E{-} denotesmathematical expectation. R... isthecovariance
matrix of the observation, and the signal and noise covariancema-
trices are R, and Ry respectively. Note that R.. has dimension
[2L —1,2L — 1] whereasR., and Ry are [M L, M L].

In the absence of noise, the assumptions under which the pa-
rameter matrix H can be identified (up to a constant scalar) and
which are assumed to hold throughout the rest of this paper are the
following [3]:

1. Theparameter matrix H isof full columnrank. Thisimplies
that the channels do not share common zeros.

2. Theautocorrelation matrix R isof full rank.

3. THE COMPONENT NORMALIZATION METHOD

Although our interest isin the real situation where noiseis present,
we will use the noise free condition to develop the new approach
which we call Component Normalization. Then we apply it to the
noisy situation using aleast squares formulation.

3.1. Noise-free Observations

The method is based on the following linear relationships between
the sensor outputs[4]:

X (mhy =] (m)h, 6,5 =1,2,., M, i#j5. (4

These linear relations follow from the fact that ; = s * k;, and
thusz; « h; = s hy x hj = x; x h; (the x symbol is the linear
convolution operator). If we pre-multiply (4) by x;(n) and takethe
expectation we get aset of M (M — 1) relations of the form:

R-Tu-’fzhj = R-T hia Za] = 1a2a"'aMa Z#] (5)

T35
Theset of equationsdescribed by (5) can bearranged in the follow-
ing form that reducesthe number of equationsfrom M (M — 1) to
M [4]:

Rh =0, (6)

where
Zi;ﬁl R‘r“‘rl _R‘T27-T1 _R‘TMle
_R$17$2 Zi;& Rmz@z
R= ,
—Ray oy, Zi;ﬁM Rey e
and
T T T 17
h=[h{ hi hir |-

Equation (6) has to be solved for the unknown h. Note that in
contrast to the cross-relation (CR) method proposedin [4] wework
with the covariance matrix rather than operating directly on the ob-
served data.

Since the vector h is different from zero (the trivial solution),
the[M L, M L] matrix Risrank deficient. Therank of Ris M L—1,
whichisthe condition for uniquechannel identifiability in [5]. This
conditionis required for (6) to have aunique solution andis acon-
sequence of the identifiability conditions previously listed. Now
we choose an element of the vector h which is known to be non-
zero, say, hm,x = «. If we denote the column of R corresponding
to that element as

—Xm(n)z1(n — k)
r= 5 | Sz —k) | b @)
—Xm(n)x.M(n — k)

we can write (6) as: .
Rh = —ar, (8)

with the following definitions. The matrix R =

§ :i;ﬂ Reje; - —Rap 3 —Raprzy
TRxy,22 : _Rmm@z : _R$M7$2
_R.rl,.rm § iEm R.r,,.r,
L —Ray oy, —Rep 0 E :i;éM R e, 1

isof size[M L, M L — 1], where
Re,z; = E{xi(n)%; (n)}

isan[L, L —1] matrix and " indicatesthat we haveremovedthe kth
element from the corresponding vector. Vector hisof size M . — 1
andit is constructed from h by removing only the kth element from
h,,:

he 1" ©)

If we arbitrarily set « = 1 and solve the set of equations rep-
resented by (8) we obtain the component normalized impulse re-
sponses of the multi-channel FIR system. We see that (8) can be
solved analytically by removing any row from R and inverting the
resulting square matrix. Since the system is overdetermined we
could use the least squares (L S) pseudoinverseinstead, but given
that thereisno noise, the solutionwould bethe same, i.e. theunique
solution (up to the arbitrary scalar factor «).

h=[h n .. o



3.2. Noisy Observations

In the noisy case, the relationships (5) (8) no longer hold and the
error term now becomes:

e=ar + Rh. (10)

Under noisy conditionswe minimize (in the L S sense) a cost func-
tion that depends on the error (10):

min e’e (11)
h

which has the following solution:

1T

h=—aR R)'RT. 12)
Note that (11) is equivalent to

mri]n h"RTRh (13)

subject to the constraint k.., » = «, whereasin the CR method [4]
the minimization problemis

mﬁn h'Rh (14

subject to various constraints. For || h ||= 1, (14) leadsto a solu-
tion that isthe eigenvector of R correspondingtoits smallest eigen-
value. Another constraint proposed in [4] isc™h = 1, where ¢
is a constant vector. For the special casec = [0,...,1/a,...,0]7
with 1/« being the £th element of c, this constraint is equivalent
to hym i = o Which follows an error criterion similar to our formu-
lation. However, we found solutions based on (14) to be somewhat
less robust to noise than our method, especially in high noise con-
ditions and as the number of channels increases; we obtained the
best results, in all cases, with the proposed criterion (11).

It may seem somewhat arbitrary to minimize the error in (10)
which involves|east-squaresfitting of statistical quantitiesthat de-
rive from idealized models. However, this approach can be further
justified from another viewpoint stemming from linear estimation
theory. Thepresenceof noisecausesunbalanceontherelationships
(4). According to the orthogonality principle this error isto be un-
correlated with the data vectors, and its minimization in the least
squares sense leads to the CR solution. In a similar way, noise in-
troduces unbalance on the relationships (5), which are used by the
Component Normalization method. The error in this caseis to be
uncorrelated with the cross-correlations of the data vectors. If we
explicitly write the error (11) for M = 2 we get

Xa(n
e:aE{[ e ]“(”‘k)}+ (1)
Raes 5, —Ray 2y ﬁl
[ I ] [ h, ] (16)

whichwewould liketo set to zero. Becausethisis not possible, we
then try to at least minimize e’ e, which is the essence of our error
criterion (11). This result applies for the general case M > 2 as
well.

4. SIMULATIONS

Inthis section we present a set of simulationsperformed to evaluate
theleast sgquarescomponent normalization (L SCN) technique. The
simulations are in the context of digital communicationswherethe
channel responsesare short and the input sequenceshaveflat spec-
tra. We use the two-channel simulation examplein [7] to compare
our method to the CR method of [4]. Additionally, we evaluatethe
LSCN and CR methods for the case of three-channel and sensors.
Unlike the simulations performed in [8], for three sensorswe eval-
uate the two methods when the unknown channels are longer than
in the two-channel case.

4.1. Two Sensors
In [7] the following two-channel FIR system was considered:

hlz[ 1 —2cos(d) 1 ]T and
h2:[1 —2cos(8+6) 1 ]T,

where the parameter é controls the angular proximity between the
zeros of the channels. The source signal was abinary (—1,1) se-
guence with white spectrum and unit power. The signal consisted
only of 30 samplesand adifferent realization of noise (independent
on each channel) with agiven power was added to the channel out-
puts for each of 100 runs of the simulation to obtain the desired
signal to noiseratio (SNR):

ol | h ]
Mo?

where o2 is the signal power (equal to 1 here) and o isthe noise
power. Our performance measureis given by:

SNR = 10log;,

where N = 100 is the number of runs,

E(i) —h— hTh(l) ~ (1)
A ()T - (0)
h" " h
is the normalized projection error, and A" is the channel estimate
for thesth run. Theaboveerror measurereflectsthefact that weare
only trying to estimate h to within an arbitrary scalefactor; further
discussion on the philosophy of error measuresin this context can
befoundin [9].
For the two channel casewe performed the following two sim-
ulations:
1. Well-conditioned channels (¢ = /10 and 6 = =):

Noise was added at different SNR'’s, from 5 — 50 dB and

the corresponding M SE of the estimateswas computed. The

two methods, CR and L SCN, were usedto estimate thechan-
nels.
2. Ill-conditioned channels(f = = /10 and § = = /10):

The same noise conditions asin the first simulations.
Theresultsof thesetwo casesare shownrespectively in Figs. 2 and
3. We can seethat the L SCN method outperformsthe CR method at
high noiselevels (low SNR) for anill condition channel, while the
two methods give similar results when the channels are well con-
ditioned.



4.2. Threesensors

In this simulation we were primarily interested in looking at the

performanceof the LSCN method when the channel lengthincreases.

In a preliminary experiment, adding observations from additional

sensors was found to give more robust estimates of long channels
(128 taps) under noisy conditions. Another advantage of adding
sensorsisthat thefirst identifiability conditionismorelikely to hold.

We used three channels whose coefficients were randomly se-

lected. The channels were 15 taps long. The source signal was
generated in the same way as in the previous simulations but was
longer (120 samples) since the number of parameters to be deter-

mine is now larger. We added noise at different levels and com-

puted the MSE over N = 200 runs. The channel estimation was
done by both the CR and LSCN methods. In Fig.4 we plot the re-

sultsfor those conditions. The advantageof the LSCN over the CR

is again clear for asignificant range in SNR.
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Figure 2: Comparison between LSCN and CR methods for the
well-conditioned channel case (6§ = ).
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Figure 3: Comparison between L SCN and CR methodsfor theill-
conditioned channel case (§ = 7 /10).

5. DISCUSSION AND CONCLUSION

For short channels as encountered in digital communications, the
new methodisrelatively simpleto implement and performsaswell
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Figure 4: Comparison between LSCN and CR for three random
channels.

or better than other recently proposed methods for fast blind iden-
tification. In spite of thesimilarity of the problem formulation with
other previous methods (all of which are based on the linear rela-
tionships between observations), the error and error minimization
criteria proposed are different and lead to more accurate results, es-
pecially at low SNR. With the addition of more sensorsthe LSCN
method becomesmore robust to noise but at the expense of higher
complexity.
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