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ABSTRACT

This paper describes a fast new n—D Discrete Radon
Transform (DRT) and a fast exact inversion algorithm
for it, without interpolating from polar to Cartesian
coordinates or using the backprojection operator. New
approach is based on the fast Nussbaumer’s Polynomial
Transform (NPT).

1. INTRODUCTION

The Radon Transform (RT) and its ill-conditioned in-
verse were first formulated by J. Radon in 1917. Cur-
rently, the RT is used in a wide variety of applica-
tions including tomography, ultrasound, optics, and
geophysics, to name a few.

Discrete versions of the classical RT are being used
in signal processing and there is an extensive literature
devoted to this subject. Procedures which are discrete
versions of the RT are known as slant stack [1], 7P
transform [2], [3], velocity filtering [4]. These proce-
dures are sucessfully used in various applications. The
fast discrete 2-D Radon transform algorithms are pre-
sented in [6],[7]. In the last paper fast algorithms is
presented only for the direct 2—-D transform.

In this paper, we introduce new direct and inverse
DRT and show that they admit fast computation by
the fast Nussbaumer Polynomial Transform (NPT) [5].

2. DISCRETE FOURIER AND RADON
TRANSFORMS

Let D¥(N) = Znyei + Znea + ...+ Zne, be v-D a
discrete paralellepiped. Its elements are column vec-
tors 1 := (i1,...,4,)" = |i), where 41,...,4, € Zn. Let
D*(N) be a dual paralellepiped consisting of vector—
rows k := (k1,ka, ... k) =(k|, k1,..., k. € Zn.
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Definition 1 The unitary operators F, and F, ! act-
ing by rules

—ﬂf( [k}

FLF@)} - fo =F(k),

ieDv

FIHFK) ::%ﬁ S re = ()
keDrY

are called direct and inverse discrete v—D Fourier trans-

forms (DFT), where (ilk) :=>""_, isks.

For convenience we omit in the following the normal-
ization factor (constant) 1/\/N

Let {a°} € D*(N) be minimal such vector set that
the rays {aa® | = 1,2,...,N — 1} cover the whole
parallelepiped D*(N) : {aa® | @« = 1,2,...,N — 1}.
Then we can write that F(aa) =

g—1 )
= Zf —iZna (05 — Z f(l) eij’
ieDv p=0\<a°|i>=p
or
! ~ 2jmap
Flaa®) =Y f(a® ple V", (1)
p=0
where
fla®,p) =R {f@)} = > £(i)

<alli>=p

Definition 2 The function f(a°,p) which is equal to
the sum of values of the signal f(i) on the discrete hy-
perplane («°|i) = pis called Discrete Radon Transform

(DRT) of f(i) [6].

The expression (1) means that v-D DFT F, is a
composition of DRT R, and a set 1-D DFT’s. The
total number of 1-D DFT is equal to the power of the
set {a°}. Every 1-D DFT acts along the ray {aa®| a =



1,2,...,L(a®)}, where L(a®) is the length of the ray.
It is necessary to find such {a°} that would give DRT
with minimum computational complexity. Note that
the classical "rown/column separable ” v—D DFT is
reduced to vN¥~! 1-D DFT’s of the lenght N.

Theorem 1 If N = ¢ is a prime integer then the total
number of rays RAY (v, ¢) that cover D*¥(q) is equal to

1)/(g—=1),

and each of rays has lenght L(n, ¢) = ¢. All rays spanned
by the following vectors of set {a}:

RAY (v, q) = (¢" —

o {a’t = (k1. ky_o, ko1, 1),

o {a®P L= (k1, .o kyn, 1,0), ,
o {a°}? = (k;,1,0...,0),

e {a°}' :=(1,0,...,0),

where k; €Zy,1=1,2,...,n

3. FAST »-D RADON AND FOURIER
TRANSFORMS

For v—D DFT we have

Fki, ko, ... k) =

g—1 q-1 -

S I S A
i1=045=0 i,=0
and the set {a°} = {a®} U{a®}~tU... ... U{a®}?U
{a°} of (¢ —1)/(q — 1) vectors. How fast can we fast
calculate DRT, i.e. the following sums f(p, a°) =

S fli, ..

kiii4 kotot Fho_1iv_1+ ko=p

Z Z Z f(il""’

kiii4 kotot... tho_2tfv_otk_1=p

iu—la iu)a

iu—laiu)a

SO flyda, b, i),
kii1+ ko=p
2o fliviz, i, 0)7
11=p
(2)
Step 1.

1. For clarify we introduce following notation

fy(il, iz, . .,iy) = f(il,iz, ceey Zl,)

2. For fast calculation of sums (2) we interpretate
the v—D scalar-valued signal f,, (é1, i2,...,4,) as (v—1)—
D polynomial-valued signal: F, (z)(¢1,42,...,4-1) =

g—1
= Z fo(in, 1, .o, il,)zi” mod(z? — 1) (3)

i,=0

that has polynomial values. The space of these signals
will be denoted as L(Z4 ™", R[z]/(27—1)). In this space
we introduce according to Nussbaumer the polynomial—-
valued basis

S(Z)kl,..., kiii4. Fko_1t,1

ku—l(ila'”ail/—l)zz s

where k’l, 1, ku—la i,_1 € Zq.
3. Let us find the polynomial-valued spectrum
fl,(z)(k’l, .. .,k’l,_l) =

g—1 g—1
=3 Fusa(@)(in, o ipog) it

i1=0 4,_,=0
(4)
In operator notation this transform can be describe as

Fo(2)(ky, . o) =

(®N ) Fo(2)(ir, - i),

where ./\fl(s)(q) is 1-D NPT acting along the s—th co-
ordinate direction and © is the tensor product. The
geometrical nature of spectrum F,(z)(k1,..., ko—1) is
obvious after substituting (3) into (4):

Fo(2) ket ooy hpt) =

q—1 ¢g-1
_ . . N T TE NS S ST
= E E folt, o yipon, i)™ 1hv—1

i1=014,=0

Z Z Z fy(il,...,il,) =

=0 \kii1+... +ko—10pv—1+ko=p

—

g—

= Z v pa {ao} mod (Zq - 1)’ (5)

where
fl’(p’{ao}y): Z folin, . tu_1,1) =
{{ae}¥]i)=p
= > . > folin, . ip_1,i))  (6)

kiii4.. +hko_1tu_1+ko=p

and <{ao}u|i> = {k’lil + ...+ kl/_lil/_l + k’l, = p}

The coefficients of ]?l,(z)(kl, ..., ky_1) are the spec-
trum of the Radon transform ﬁ,(p, {a’}¥) of the initial
signal f,(é1,72,...,4,) which are calculated using the
fast NPT.

4. From the polynomial-valued spectrum we can
obtain the classical Fourier spectrum:

Flaky, aka, ..., aky_1,a) =



ky_1,1))WP. (7)

g—1
= Zfl/(pa (kla kZa ceey
p=0

Therefore, if a, # 0 we can obtain Fourier spectrum
of v-D DFT lying on the rays aa® = a - (ki, ko, ...,
ky_1,1) from ﬁ,(p, a?) using ¢“~! of 1-D FFT.

Step 2. R
1. Now we must calculate f,(p, {a®}*~1) =

= Z Z fu(ilaiZauin)a

kiii4... +hko_2iu_atko_1=p

where {a®} =1 = (ky, ko, ..., ky_2,1,0). It is clear that
folp,{ao}=h) =

= > .. > (qify(il,...,iy)):

kiti+... 4kv—2iv_o+k,_1=p \i,=0

= Z Z Jooi(in i, iuze),  (8)

kiti4.. thko_2tv_otk,_1=p

7il/—1) = Z fl’(il""’il’)'

2. Also, we have (v — 1)-D discrete Radon trans-
form (8) of signal f,_1(i1,...,4,—1). We repeat all the
transformations with the signal f,_1(41,...,4,—1) : that
we have applied to the initial signal f, (i1, ..., 4, -1,4,).
Again we interpretate the (v — 1)-D scalar—valued sig-

where f,_1(i1,...

nal fy_1(é1,...,4-1) as (v — 2)-D polynomial-valued
signal:
g—1
fl,_l(z)(il, R iy_z) = Z fu—l(ila e iy_l)ZZ”_l .

i,=0

3. Let us find the polynomial-valued spectrum

Foer(2)(ky, . kyoo) =

g—1 g—1
=D Fuca(@)(in, o iyg) s o

i1=0 4,-1=0

= ((E_@Nfs)(q)) o Fo ()it .. ius),

Obviously, ]?l,_l(z)(kl, vy ky_2) =

g—1
= qu—l(]?, {7 1zF mod (27 — 1),
p=0
where ﬁ,_l(p, al ) =
= Z Z fl/—l(ila"'ail/—zail/—l)~

kiii4... +hko_2iv_atko_1=p

4. From this polymial-valued spectrum we can ob-
tain Fourier transform lying on the rays {a®}¥~! =

{(aky, aks, ... a,0)}:

g—1
F((akl, e, Q@ 0)) = fu—l(pa (k’l, ceey k’l,_z, 1, 0))Wap
p=0
using ¢¥~2 of 1-D DFT, etc......
Step (v —1).

1. Repeating this process v — 1 times we go to
calculation following sum

p,{ao} Z Zfl’ (i1,..., %

kii14+1 =p

Folp{a")?) =
S (Z S hine i, )

ki1i1+1=p ¥, =0 i3=0

It 1s clear that

E E 72 Z1,12

kiii+1 =p
where
11,12 = E f3 ZlaZZaZE}
i3=0

2. Here we have 2-D discrete Radon transform of
the signal fa(i1,i2). We interpret again this signal as
1-D polynomial-valued signal:

1) = Z faliv, io)z

i2=0

3. The latter signal have polynomial-valued spec-

trum ]?z(z)(k’l) =

g—1

= Fal2)(in)z™ = Ni(g) {Fa(2) (i)} -

i1=0

4. Fourier spectrum of v—D DFT lying on the rays

{a(k1,1,0,...,0)} has the form
F(aky,a,0,...,0) =
g—1
D 3 falini) | wer =
=0 \kqii+ky=p
g—1
=" Falp, (k1,1,0,...,0)) W
p=0
We calculate using ¢ of 1-D DFT.
Step v.

And, finally, on the v—th step we have to calculate
one 1-D DFT

F(a-(1,0,0,...,0))

g—1
=> AW,
p=0



g—1
where fl(ll) = Z fz(il,iz).
i2=0
Now, let us summarize. We propose the folloving
algoritm for computing DRT consisting of v — 1 steps

of fast NPT: R

Step 1. F(2)(k1, ..., kv 1) =
v—1
- (®N55>(q)) o Fu(2) (i1, - iv_1),
s=1
Step 2. Fo_1(2)(k1,. .. ky_o) =

- (®N55>(q)) o Fy1(2) (i1, .. ., iy_s),

Step v — 2. ]?3(,2)(1471, ko) =
= N (g) @ M (g) {F5(2) (i, i)}

Step vr—1. ﬁz(z)(kl) = Nl(l)(q) {Fa(2)(i1)}, where
Nl(l)(q) is 1-D g—points NPT acting along the ith co-
ordinate direction.

The total number fast NPT equals

i g = ¢ g =) — g+ 1

(¢ —1)*

i=v—1

and if ¢ > 2 this number is approximately v¢* 2.

For computing v-D DFT (¢*=* —1)/(¢ — 1) 1-D
fast DFT are required.

Recall [5] that

Ad(Ni(q)) = ¢Ad(Fi(q)), Mu(Ni(q)) = 0;

where

A(V: (g)), Mu(Ni () and Ad(F1(¢)), Mu(F3(¢))

are additive and multiplicative complexities 1-D ¢—
points fast NPT ANj(g) and DFT Fj(q), respectively.

In summary, the total complexity of the proposed
algorithm for computing v—D DRT is

Ad(Ry(q)) = v¢"*Ad(Ni(g)), Mu(Ry(q)) =0
and for computing v—D DFT is
Ad(F,(g)) = vg"T*Ad(N1(9)+

1/—1_1

HE A () & (v 4+ 1)g T Ad (R ),
Mu(7, () = ©— = Mu(%i()

Therefore additive computer complexity of the present
algorithm and traditional algoritms is equivalent, but
multiplicative computer complexity of the new algo-
rithm is a in v times smaller.

4. CONCLUSIONS

The important contribution of this work is that it brings
a new approach to independent /parallel decomposition
of n—D Discrete Fourier Transform. This approach

e requires fewer number of 1-D DFT thant the clas-
sical separable radix FFT—type approach,

e has v times smaller multiplicative complexity of
v—D DFT compared to row/column approach,

e Introduce a new fast direct a exact inversion al-
gorithms of Discrete Radon Transform.
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