
OPTIMAL GENERALIZED SAMPLING EXPANSION

Daniel Seidner and Meir Feder

Department of EE-System
Tel-Aviv University

Tel-Aviv 69978 Israel
e-mail: danis@eng.tau.ac.il, meir@eng.tau.ac.il

ABSTRACT
This work presents an analysis of Papoulis’ Generalized
Sampling Expansion (GSE) for a wide-sense stationary sig-
nal with a known power spectrum in the presence of quanti-
zation noise. We find the necessary and sufficient conditions
for a GSE system to produce the minimum mean squared
error while using the optimal linear estimation filter. This
is actually an extension of the optimal linear equalizer (lin-
ear source/channel optimization) to the case ofM parallel
channels.

1. INTRODUCTION

In his famous Generalized Sampling Expansion (GSE) [1],[2]
Papoulis has shown the following: A signalf(t) of finite en-
ergy, bandlimited to! 2 [�B;B], passing throughM LTI
systems and generating responsesgk(t); k = 1; : : : ;M , can
be uniquely reconstructed, under some conditions on the
M filters, from the samples of the output signalsgk(nT ),
sampled at1=M the Nyquist rate. While Nyquist samples
are�=B apart, the outputs in a GSE system are sampled at
T = M�=B apart. Papoulis found the explicit reconstruc-
tion formula of f(t) from the samplesgk(nT ). Another
version of the GSE was introduced by Brown [3]. The anal-
ysis conducted by Papoulis and Brown assumed knowledge
of the exact values of the samples. In practice, we never
have the exact values of the samples due to quantization and
noise. Therefore the question of how well is the reconstruc-
tion in the presence of noise immediately arises. Cheung
and Marks [4] were the first to discuss these issues for de-
terministic input signals. They found a sufficient condition
for Ill-Posedness, where under their definition, an ill-posed
GSE system is a system which produces an un-bounded re-
construction error when a small amount of noise is imposed
on the samples. Brown and Cabrera [5],[6], found a neces-
sary and sufficient condition for well-Posedness. Under the
assumption of white quantization noise, Seidner and Feder
[7] found the necessary and sufficient conditions for the best
possible GSE system, in the sense of producing the minimal
mean squared reconstruction error.

For a single sampling channel having one input and one
output, where the input is a wide-sense stationary (WSS)
signal with a known power spectrum, optimal filtering anal-
ysis in the presence of additive noise, has been widely ex-
plored (see e.g. [8],[9],[10],[11],[12]). This is actually the
well-known problem of optimal linear equalization (linear
combined source/channel analysis). Costas [13] found the
optimal pre-filter and post-filter required to produce the min-
imal mean squared reconstruction error of a channel with
additive noise. For the case of a bandlimited WSS input
signal sampled at the Nyquist rate, his result leads to the
optimal pre-filter which should be used prior to the sam-
pling followed by the post-filter (multiplied by a factor of
�=B due to the sampling).

Although mentioned by Kahn and Liu [14], a similar
analysis for GSE system, i.e. for more than one sampling
channel, does not appear in literature.

We here consider the sampling ofM channels result-
ing from feeding a WSS signalx(t) with a known power
spectrumSxx(!) intoM filtersHk(!) and adding different
stochastic noise sequences to theM sampled signals as an
M dimensional communication channel. We find the opti-
mal filtersHk(!) wherek = 1; : : : ;M which are the solu-
tion for the optimal linear equalization problem (or the lin-
ear solution of the combined source/channel problem) for an
M -dimensional channel. These filters represent the optimal
GSE system.

2. PROBLEM FORMULATION

The transfer function of a GSE system is denotedH(!),
whereH(!) is anM dimensional vector, and so we have

G(!) = H(!)X(!) (1)

whereG(!)T = [G1(!); : : : ; GM (!)] andX(!); Gk(!)
are the Fourier transforms of the input signalx(t) and the
k-th output channelgk(t) respectively. When sampling at
1=M the Nyquist rate, i.e. at a sampling periodT = M�=B,
we get aliased versions of the output signals, which, at the



frequency domain, are periodic with a periodc = 2B=M .
We denote byGa

k(!) the Fourier transform of the sampled
k-th output signal, and observe that since it is periodic with
a periodc it is sufficient to consider only one period, say
! 2 [�B;�B + c]. At this region,Ga

k(!) is composed
of M replicas ofGk(!), the Fourier transform of thek-th
output signal, shifted in frequency by multiples ofc, i.e.

Ga
k(!) =

� c

2�

�M�1X
i=0

Gk(! + ic); ! 2 [�B;�B + c]

(2)
SinceGk(!) = Hk(!)X(!) whereHk(!) is thek-th com-
ponent of the LTI system transfer vectorH(!), we have

Ga
k(!) =

� c

2�

�M�1X
i=0

Hk(!+ic)X(!+ic); ! 2 [�B;�B+c]

(3)
This is true fork = 1; 2; : : : ;M , and so we may write,

in a matrix form:

G
a(!) =

� c

2�

�
T(!)Xa(!) ! 2 [�B;�B + c] (4)

whereGa(!)T = [Ga
1(!); G

a
2(!); : : : ; G

a
M (!)] and

X
a(!)T = [X(!); X(!+ c); : : : ; X(!+(M � 1)c)] (5)

i.e. itsl-th component isX(!+(l�1)c), and finally,T(!)
is anM �M matrix whose(k; l)-th component is given by

Tkl(!) = Hk(! + (l � 1) � c) (6)

We assume now thatx(t) is a bandlimited WSS sig-
nal with a known bandlimited power spectrumSxx(!) in
! 2 [�B;B] and that every two frequency components of
the signal are uncorrelated. Althoughx(t) does not have a
Fourier transform since it has infinite energy,
lim�!1E

�jX(!)� j2
	

exists for WSS signals, where

X(!)� =
1p
2�

Z �

��
x(t)ej!tdt (7)

Since our concern is with such expectations we will replace
X(!) with X(!)� when expectations are calculated.

Adding a zero mean discrete stochastic noise sequence
to each of the samples sequences resulting from sampling
the M output channels of a GSE system prior to recon-
struction, is equal to adding a bandlimited WSS noise sig-
nal vk(t) to thek-th channel prior to the sampling where
Svkvk (!) exists for! 2 [�B;�B + c]. In the frequency
domain this is done by adding the vector(c=2�)Va(!) to
G

a(!) whereVa(!)T = [V1(!); : : : ; VM (!)] andVk(!)
is the (non-existing) Fourier transform ofvk(t) prior to the
sampling.

Thus the model describing the system is

Y(!) =
� c

2�

�
T(!)Xa(!) +

� c

2�

�
V(!) (8)

The correlation matrixCxx(!)� is

Cxx(!)� = E
n
X
a(!)�X

a(!)T
�

�

o
(9)

It is well known, (see e.g. [2]), that

Cxx(!) = lim
�!1

Cxx(!)� = Sxx(!) (10)

whereSxx(!) is the cross-spectrum matrix of the vector
X
a(!):

Sxx(!) = (11)

diag fSxx(!); Sxx(! + c); : : : ; Sxx(! + (M � 1)c)g
Similarly we find

Cxy(!) =
� c

2�

�
Sxx(!)T(!)

T� (12)

and

Cyy(!) =
� c

2�

�2
T(!)Sxx(!)T(!)

T� +
� c

2�

�2
Svv(!)

(13)
whereSvv(!) is the cross-spectrum matrix of the vector
V(!), i.e.Svv(!) = diag fSv1v1(!); : : : ; SvMvM (!)g.

Using the well known Bayesian estimation analysis (see
Kay [15] for example) we find the reconstruction formula

X̂
a(!) = P(!)Y(!) (14)

where the(l; k)-th component ofP(!) is thel-th frequency
slice of thek-th reconstruction filter, i.e.Pk(! + (l � 1)c).
Thus, the matrixP(!) fully represents theM reconstruc-
tion filtersPk(!) . P(!) is found by

P(!) = Cxy(!)Cyy(!)
�1 (15)

=

�
2�

c

�
Sxx(!)T(!)

T� �
h
T(!)Sxx(!)T(!)

T� + Svv(!)
i�1

In this case of a linear model we find that the cross-
spectrum matrix of the reconstruction error
e
a(!) = X̂a(!)�Xa(!) is

See(!) =
h
Sxx(!)

�1 +T(!)T
�

Svv(!)
�1
T(!)

i�1
(16)

In order to have a meaningful optimal GSE system we
need to enforce a power constraint on the average power
sent to the channel. We have chosen the following constraint

�2x =
1

2�

Z �B+c

�B
trace

n
T(!)Sxx(!)T(!)

T�
o
d! (17)

where�2x = E
�jx(t)j2	. This means that the total power

of the sum of theM outputs (prior to sampling) is equal to
the input signal power.



We now want to find the systemT(!) which minimizes
the mean squared reconstruction error subject to the power
constraint. The functional to be minimized is

J =
1

2�

Z �B+c

�B
f (T(!); �) d! (18)

where

f (T(!); �) = trace
n
See(!) + �T(!)Sxx(!)T(!)

T�
o

(19)
where the first term above is actually an integral on the
power spectrum of the error, the second term results from
the power constraint and� is the Lagrange multiplier.

3. THE OPTIMAL GSE SYSTEM

The solution is found by taking the derivative ofJ with re-
spect toT(!) treating the(i; j)-th component ofT(!), i.e.
Tij(!), and its conjugateT �ij(!) as independent variables
(See Appendix A in Therrien [16]). Thus, the optimalT(!)
satisfies @f

@Tij(!)
= 0 and @f

@T�
ij
(!) = 0 for i = 1; : : : ;M and

j = 1; : : : ;M yielding

�
h
Sxx(!)

�1 +T(!)T
�

Svv(!)
�1
T(!)

i2
=

T(!)T
�

Svv(!)
�1
T(!)T

�
�1

Sxx(!)
�1

(20)

Let us first discuss the simple case of a diagonalT(!).
The solution for this particular case is given by

T(!)T
�

T(!) = (21)
1p
�
Svv(!)

1=2
Sxx(!)

�1=2 � Svv(!)Sxx(!)�1

where� is found from the power constraint, i.e. from equa-
tion (17). This is actually a case ofM disjoint sub-band
channels which is identical to the one channel case, where
Svv(!) of the single channel with! 2 [�B;B] is split into
M componentsSvv(!+ (k� 1)c) with ! 2 [�B;�B+ c]
which are used as the components ofSvv(!). We then get
similar equations for both the GSE and the single channel
cases. Note that the right-hand side of equation (21) is a di-
agonal matrix. We denote this matrix byD(!). This matrix
must be positive semi-definite matrix. For all frequencies
for which one of the components ofD(!) is negative, it
must be replaced by 0. This means that for these frequen-
cies the appropriate component ofT(!) must be zero.

We now discuss the case whereSvv(!) = Svv(!)I, i.e.
the quantization noise of allM channels has the same power
spectrumSvv(!) for ! 2 [�B;�B + c]. It is easy to see
that the solution is also given by equation (21). Note again
that for all frequencies for which one of the components

of D(!) is negative, it must be replaced by 0. For these
frequencies the appropriate column ofT(!) must be a zero
vector.

If all the components along the main diagonal ofD(!)
are distinct for every!, then by using singular value de-
composition ofT(!), i.e.T(!) = A(!)�(!)B(!)T

�

, it is
easy to see that

T(!) = U(!)�(!)iB(!)T
�

i (22)

whereU(!) is an arbitrary unitary matrix,B(!)i is a col-
umn permutation ofdiag

�
ej�1(!); : : : ; ej�M (!)

	
where

�k(!) is an arbitrary function of! and�(!)i is a similar
permutation of the square root ofD(!). Note that we may
choose a different permutation for every!.

If somek components ofD(!) are equal, we may choose
anyk� k unitary matrix and substitute its components with
the corresponding components ofB(!) (i.e. in the the in-
tersections of thek rows and columns of the non-distinct
values ofD(!)).

An explicit expression forT(!) of the general case has
not been found yet.

4. EXAMPLES

As the first example we discuss the case of white signal
and white noise. We denote then-th noise value which
is added to then-th sample of thek-th channel asvk(nT )
whereEfvk(nT )v�q (mT )g = �2v �k;q�n;m andvk(nT ) is a
zero mean random variable. We may therefore consider the
sequencevk(nT ) as a sample sequence of a white WSS
stochastic processvk(t), which is bandlimited to! 2 [�B;
� B + c] wherec = 2B=M , and has a spectral power den-
sity of Svv(!) = Nv (prior to sampling). Similarly, the
signalx(t) is a bandlimited white noise withSxx(!) = Nx

for ! 2 [�B;B]. Therefore we haveSxx(!) = NxI and
Svv(!) = NvI, For this case we find that the optimal GSE
system satisfiesT(!)T

�

T(!) = I for ! 2 [�B;�B + c]

and that P(!) =
�
2�
c

�
T(!)�1

h
Nx

Nx+Nv

i
. This is equal

to the optimalT(!) for the deterministic case which is de-
scribed in [7]. (A factor ofM is required there because of a
different power constraint).

The second example is a GSE system in whichSvkvk (!)

= 1
M

PM
i=1 Svv(!+(i�1)c) for ! 2 [�B;�B+ c] where

Svv(!) is the noise power spectrum of a single channel.
Thus,Svkvk(!) is an aliased version of the original noise.
We assume that the noise sequences of different channels
are still uncorrelated. We now find the optimal equalizer
Hopt(!) for a single channel having noise spectrum which
is Svkvk (!) duplicatedM times into! 2 [�B;B]. When
we choose:



Tk;l(!) = ej!(k�1)(l�1)2�=MHopt(! + (l � 1)c)=
p
M

it is easy to find particular cases ofSxx(!) andSvv(!) for
which this system produces a mean squared error smaller
than this of the optimal original single channel which had
the originalSvv(!). (Note that this system satisfies equa-
tion (20) ). This implies that such GSE systems may pro-
duce a smaller reconstruction error then a single channel.

5. CONCLUSION

We have found the equation of the optimal filter bank equal-
izer for the case of sampling of a bandlimited WSS input
signal with an additive bandlimited WSS noise. We had also
shown that a GSE system may outperform a single channel
although the explicit formula of the optimal GSE system has
not been found for the general case.
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