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ABSTRACT For a single sampling channel having one input and one
This work presents an analysis of Papoulis’ Generalized output, where the input is a wide-sense stationary (WSS)
Sampling Expansion (GSE) for a wide-sense stationary sig-signal with a known power spectrum, optimal filtering anal-
nal with a known power spectrum in the presence of quanti- ysis in the presence of additive noise, has been widely ex-
zation noise. We find the necessary and sufficient conditionsplored (see e.g. [8],[9],[10],[11],[12]). This is actually the
for a GSE system to produce the minimum mean squaredwell-known problem of optimal linear equalization (linear
error while using the optimal linear estimation filter. This combined source/channel analysis). Costas [13] found the
is actually an extension of the optimal linear equalizer (lin- optimal pre-filter and post-filter required to produce the min-

ear source/channel optimization) to the casébparallel imal mean squared reconstruction error of a channel with
channels. additive noise. For the case of a bandlimited WSS input
signal sampled at the Nyquist rate, his result leads to the

1. INTRODUCTION optimal pre-filter which should be used prior to the sam-

pling followed by the post-filter (multiplied by a factor of
In his famous Generalized Sampling Expansion (GSE) [1],[2]F/B due to the sampling).

Papoulis has shown the following: A signik) of finite en- Although mentioned by Kahn and Liu [14], a similar
ergy, bandlimited tas € [~ B, B], passing through/ LTI analysis for GSE system, i.e. for more than one sampling
systems and generating respongg$),k = 1,...,M,can  channel, does not appear in literature.

be uniquely reconstructed, under some conditions on the ~We here consider the sampling 8f channels result-
M filters, from the samples of the output signglgnT), ing from feeding a WSS signal(t) with a known power

sampled atl /M the Nyquist rate. While Nyquist samples SPectrums;, (w) into M filters Hy (w) and adding different
arer/B apart, the outputs in a GSE system are sampled atStochastic noise sequences to filesampled signals as an

T = M=/B apart. Papoulis found the explicit reconstruc- M dimensional communication channel. We find the opti-
tion formula of f(¢) from the samplegy,(nT). Another ~ malfiltersHy (w) wherek = 1,..., M which are the solu-
version of the GSE was introduced by Brown [3]. The anal- tion for the optimal linear equalization problem (or the lin-
ysis conducted by Papoulis and Brown assumed knowledgegar solution of the combined source/channel problem) for an
of the exact values of the Samp|es_ In practiCE, we neverM'dimenSional channel. These filters represent the Optlmal
have the exact values of the samples due to quantization anSE system.

noise. Therefore the question of how well is the reconstruc-

tion in the presence of noise immediately arises. Cheung 2. PROBLEM FORMULATION

and Marks [4] were the first to discuss these issues for de-

terministic input Signals. They found a sufficient condition The transfer function of a GSE system is deno}édd),

for ”l-PosedneSS, where under their dEfinition, an i”'DOSEd WhereH(w) is anM dimensional vector, and so we have
GSE system is a system which produces an un-bounded re-

construction error when a small amount of noise is imposed G(w) = Hw)X (w) (1)
on the samples. Brown and Cabrera [5],[6], found a neces-
sary and sufficient condition for well-Posedness. Under thewhere G (w)? = [Gy(w),..., Gy (w)] and X (w), Gy (w)

assumption of white quantization noise, Seidner and Federare the Fourier transforms of the input siga#ét) and the

[7] found the necessary and sufficient conditions for the bestk-th output channeg (t) respectively. When sampling at
possible GSE system, in the sense of producing the minimall /A the Nyquistrate, i.e. ata sampling periBé= M~ /B,
mean squared reconstruction error. we get aliased versions of the output signals, which, at the



frequency domain, are periodic with a peried= 2B /M.
We denote byG (w) the Fourier transform of the sampled

k-th output signal, and observe that since it is periodic with

a periodc it is sufficient to consider only one period, say
€ [-B,—B + c|]. At this region,G{(w) is composed

of M replicas ofG}, (w), the Fourier transform of the-th

output signal, shifted in frequency by multiplesf.e.

G (w —( )Zka+zc € [-B,—B+ (]
)
SinceGy (w) = Hg(w)X (w) whereHy (w) is thek-th com-

ponent of the LTI system transfer vecli(w), we have

Go(w) = (%) Mi Hy(w+ic) X (wtic),w € [-B, —B-+d]
i=0
This is true fork = 1,2,..., M, and so we may V\sr?;t)e,
in a matrix form:
G*() = (52) TW)X*w) we[-B,~B+d (4
whereG*(w)T =[G4 (w), G (w), . ..,G%,(w)] and
X' (w) = [X(@), X(w+e),..., X (w+ (M ~1)c)] (5)

i.e. itsi-th componentis{ (w+ (I —1)c), and finally,T (w)
isanM x M matrix whose(k, 1)-th component is given by

Tkl (w) C) (6)

We assume now that(t) is a bandlimited WSS sig-
nal with a known bandlimited power spectrusiy,. (w) in
w € [—B, B] and that every two frequency components of
the signal are uncorrelated. Althougl¥) does not have a
Fourier transform since it has infinite energy,
lim, o E {|X(w)-|*} existsfor WSS signals, where

:Hk(w+(l—1)~

X(w), = (t)el“tdt

g o

The correlation matriXCyx (w) IS

Cox(w)y = E {xa(w)Txa(w)Z*} 9)
It is well known, (see e.g. [2]), that
Cxx(w) = Tli_>r1010 Cux(w)r = Sxx(w) (10)

where Sy« (w) is the cross-spectrum matrix of the vector
X*(w):

Sxx(w) =
diag {Szz(w), Spz(w+¢), ...,

Similarly we find

(11)
See(w + (M —1)c)}

c

Cuy () = (5 ) Sex(@) T()""

5 (12)

and
C

Cyy(w) = (%

Cc

2 I 2
) T@)Sax(@)T@) + (=) Swu(w)
2w
(13)
where S, (w) is the cross-spectrum matrix of the vector
V(w), i.e.Syy(w) = diag {Sy v, (W), - .., Svpon (W)}
Using the well known Bayesian estimation analysis (see

Kay [15] for example) we find the reconstruction formula
X% (w) = P(w)Y(w) (14)

where the(l, k)-th component oP (w) is thel-th frequency
slice of thek-th reconstruction filter, i.eP; (w + (I — 1)c).
Thus, the matrixP (w) fully represents thél/ reconstruc-
tion filters P, (w) . P(w) is found by

P(w) Cxy(w)Cyy (w)_l
(%”) S (@) (@)™

[Tk ()T@)™ + S ()] o

(15)

In this case of a linear model we find that the cross-

X (w) with X (w), when expectations are calculated.

e’ (w) = X*(w) — X*(w) is

Adding a zero mean discrete stochastic noise sequence

to each of the samples sequences resulting from sampling Seo(w)
the M output channels of a GSE system prior to recon-

struction, is equal to adding a bandlimited WSS noise sig-
nal v (t) to the k-th channel prior to the sampling where
Sy, v, (W) exists forw € [-B,—B + ¢]. In the frequency
domain this is done by adding the vectey2m)V*(w) to
G*(w) whereVe(w)T = [Vi(w), ..., Var(w)] and Vi (w)
is the (non-existing) Fourier transform of(¢) prior to the
sampling.

Thus the model describing the system is

Y(w) = (

c Cc

) T@X @)+ (5) V@) (@

. -1
= [Sux(@) !+ T()" Suu(w) ' T(w)]
(16)
In order to have a meaningful optimal GSE system we
need to enforce a power constraint on the average power
sent to the channel. We have chosen the following constraint

1 Bt .
02 = — trace {T(w)Sxx(w)T(w)T }dw a7)
27
whereo? = E {|z(t)|*}. This means that the total power

of the sum of thel/ outputs (prior to sampling) is equal to

the input signal power.



We now want to find the systeffi(w) which minimizes  of D(w) is negative, it must be replaced by 0. For these
the mean squared reconstruction error subject to the powefrequencies the appropriate columnbfw) must be a zero

constraint. The functional to be minimized is vector.
| Bt If gll_the components along the.main. diagonaldfw)
= f (T(w), \) dw (18) are distinct for every, then by using singular value de-
2r J_B composition ofT'(w), i.e. T(w) = A(w)Z(w)B(w)™", itis
where easy to see that
£ (T(w), ) = trace {see (@) + AT(w)Sxx (@) T(w) " } T(w) = U(w)S(w);Bw)] (22)

(19)
where the first term above is actually an integral on the
power spectrum of the error, the second term results from
the power constraint anklis the Lagrange multiplier.

whereU (w) is an arbitrary unitary matrixB(w); is a col-
umn permutation ofliag {e7®1(+), ... ei®m ()} where
ay(w) is an arbitrary function ofv andX(w); is a similar
permutation of the square root Bf(w). Note that we may
choose a different permutation for every

3. THE OPTIMAL GSE SYSTEM If somek components oD (w) are equal, we may choose
anyk x k unitary matrix and substitute its components with

The solution is found by taking the derivative fwith re- the corresponding componentsBfw) (i.e. in the the in-
spect toT'(w) treating the(i, j)-th component off'(w), i.e.  tersections of thé: rows and columns of the non-distinct

Tij(w), and its conjugatdy;(w) as independent variables yajues ofD(w)).
(See Appendix A in Therrien [16]). Thus, the optin{(w)

. e F:) F:) .
saﬂsﬁe% =0 a”dﬁ.f(@ =0fori=1,...,M and An explicit expression foll'(w) of the general case has
j=1,...,M yielding not been found yet.
—1 T* —1 2
A [Ssx(@) ! + T@) Suv(w) ' T(w)]| = 4. EXAMPLES
T* - " -
T(w)" Suv(@) ' T(w)"  Sxx(w)™ As the first example we discuss the case of white signal

(20) and white noise. We denote theth noise value which
is added to the:-th sample of thé-th channel a®,(nT)

Letus first disquss the simple case pf a diagah@b). whereE{vy, (nT)v;(mT)} = 02 05,q0n,m andvg(nT) is a
The solution for this particular case is given by zero mean random variable. We may therefore consider the
T(w)T*T(w) _ 21) sequencey, (nT') as a sample sequence of a white WSS

. 12 12 . stochastic process, (t), which is bandlimited ta € [ B,

5 Svv (W) 5 8xx (W) — Syv(w)Sxx(w) — B + c¢] wherec = 2B/M, and has a spectral power den-
sity of Sy, (w) = N, (prior to sampling). Similarly, the
signalz(t) is a bandlimited white noise with,, (w) = N,
for w € [-B, B]. Therefore we hav84«(w) = N,I and

%w(w) = N,I, For this case we find that the optimal GSE

where is found from the power constraint, i.e. from equa-
tion (17). This is actually a case @i disjoint sub-band
channels which is identical to the one channel case, wher
Syw(w) of the single channel withy € [-B, B] is splitinto system satisfie®(w)? T(w) = Iforw € [-B, —B + (|

M components§,, (w + (k— 1)c) withw € [-B, —B + ] o T N o

which are used as the componentsof (w). We then get ~ and that P(w) = (%F) T(w) [Nmva] - This is equal
similar equations for both the GSE and the single channelto the optimalT (w) for the deterministic case which is de-
cases. Note that the right-hand side of equation (21) is a di-scribed in [7]. (A factor ofd! is required there because of a
agonal matrix. We denote this matrix BY(w). This matrix ~ different power constraint).

must be positive semi-definite matrix. For all frequencies

for which one of the components ®(w) is negative, it The second example is a GSE system in witigh,,, (w)
must be replaced by 0. This means that for these frequen= - Zf\il Syy(w+ (i—1)c) forw € [-B, —B+c] where
cies the appropriate componentBfw) must be zero. Syv(w) is the noise power spectrum of a single channel.
Thus, Sy, v, (w) is an aliased version of the original noise.
We now discuss the case whg, (w) = Sy (W), i.€. We assume that the noise sequences of different channels

the quantization noise of alll channels has the same power are still uncorrelated. We now find the optimal equalizer
spectrumS,, (w) forw € [-B,—B + ¢]. Itis easy to see  H,,(w) for a single channel having noise spectrum which
that the solution is also given by equation (21). Note againis S,, ., (w) duplicated)M times intow € [-B, B]. When
that for all frequencies for which one of the components we choose:



Tri(w) = edok=0=020/M 1 (0 + (1 — 1)) /M
it is easy to find particular cases 8f, (w) andS,, (w) for

which this system produces a mean squared error smaller

than this of the optimal original single channel which had
the originalS,, (w). (Note that this system satisfies equa-
tion (20) ). This implies that such GSE systems may pro-
duce a smaller reconstruction error then a single channel.

5. CONCLUSION

We have found the equation of the optimal filter bank equal-
izer for the case of sampling of a bandlimited WSS input

signal with an additive bandlimited WSS noise. We had also
shown that a GSE system may outperform a single channel

although the explicit formula of the optimal GSE system has
not been found for the general case.

6. REFERENCES

[1] A. Papoulis. Generalized Sampling ExpansidBEE
Trans. on Circuits and Systenp. 652-654, 1977.

[2] A. Papoulis.Signal AnalysisMcGraw Hill, New York,
1977.

[3] J. L. Brown Jr. “Multi-channel sampling of low-pass
signals”, IEEE Trans. Circuits and Systeigl. CAS-
28, no. 2, pp. 101-106, February 1981.

[4] K. F. Cheung and R. J. Marks Il. “lll-posed sam-
pling theorems”)EEE Trans. Circuits and Systepasl.

CAS-32, no. 5,, pp. 481-484, May 1985.

[5] J. L. Brown Jr. and S. D. Cabrera “Multi-channel re-
construction using noisy sample$?roc. of ICASSP90
vol. 3, D1.9, pp. 1233-1236.

[6] J. L. Brown Jr. and S. D. Cabrera “On well-posedness
of the Papoulis generalized sampling expansitBEE
Trans. Circuits and Systemsl. 38, no. 5, pp. 554-556,
May 1991.

[7] D. Seidner and M. Feder. “Noise sensitivity of GSE
systems”, Proceedings of the 8th DSP Workshapg.

1998.
[8]

R. M. Stewart. “Statistical design and evaluation of Fil-
ters for the restoration of sampled datBtpc. IRE vol.

44, pp. 253-257, Feb. 1956.

[9] J. J. Spilker “Theoretical bounds on the performance of
sampled communications system3RE Tran. Circuit
Theory vol. CT-7, pp. 335-341, Sep. 1960.

[10] W. M. Brown. “Optimum prefiltering of sampled
data”, IRE Trans. Information Theorwol IT-7, pp.
269-270, Oct 1961.

[11] D. Middleton and D. P. Petersen. “A note on optimum
presampling filters”)EEE Trans.on Circuit Theorywol
CT-10, pp. 108-109, Mar. 1963.

[12] R. J. Marks. “Noise sensitivity of band-limited sig-
nal derivative interpolation”|EEE Trans.on Acoustics,
Speech, and Signal Processjngl ASSP-31, no. 4, pp.
1028-1032, Aug. 1983.

[13] J. P. Costas. “Coding with Linear SystemsProc.
IRE, vol 40, pp. 1101-1103, Sep. 1952.

[14] R. E. Kahn and B. Liu. “Sampling representations and
the optimum reconstruction of SignaldEEE Trans.on
Information Theoryvol IT-11, no. 3, pp. 339-347, Jul.
1965.

[15] S. M. Kay. Fundamentals of Statistical signal pro-
cessing: Estimation theoryPrentice-Hall, New Jersey,
1993.

[16] C. W. Therrien.Discrete random signals and statisti-
cal signal processingPrentice-Hall, New Jersey, 1992.



