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ABSTRACT

This paper discusses some theoritical results on un-
derdetermined source separation i.e. when the mix-
ing matrix is degenerate, espcially when there is more
sources than observations. In this case, we show that
the sources can be restored up to an arbitrary addi-
tive random vector. In the particular case of discrete
sources, very relevant for digital communications, we
show that this vector is certain.

1. INTRODUCTION AND PROBLEM

FORMULATION

Let an array of m sensors, each one receiving an un-
known linear instantaneous combination of n unknown
sources. Source separation consists in recovering the
sources by using only sensor outputs. It relies on the
main assumption of source spatial statistical indepen-
dence.

Most source separation algorithms assume that the
number of sources is less than the number of sensors
n � m. Despite its high interest, the case where the
number of sources is greater than the number of sensors
n > m (called underdetermined source separation) has
only been treated in particular cases.

In [2], Cao et al. gave necessary and su�cient con-
ditions for the existence of a separating matrix, which
can separate the sources into several groups. In [10],
the use of high order statistics, under some conditions,
can estimate the distinct angles of arrivals for more
sources than sensors. In [3], it is shown how more
sources than sensors can be identi�ed by using only
the fourth order cumulants. Belouchrani et al. [1] use
the Expectation-Maximization algorithm for the sep-
aration of more sources than sensors, assuming that
the sources are k-valued. A competitive learning algo-
rithm has been used by Pajunen [9] to solve a similar
problem, in which the sources were assumed to be bi-
nary. Finally, Comon et al. [4] adress the problem
by forming virtual measurements in order to increase

the observation vector dimension. These supplemen-
tary observations are nonlinear functions of the truly
observed sensor outputs.

Let s(t) = [s1(t); s2(t); � � � ; sn(t)]
T denote the n �

1 unknown stationary source vector, components of
which are assumed to be statistically independent. Let

x(t) = As(t) + v(t) (1)

be the output of the array of m sensors (m < n). A is
an m�n full rank unknown matrix modeling the chan-
nel transfer function. v(t) is a stationary white additive
Gaussian noise with covariance matrix � = E[vvT ]. It
is assumed that s(t) and v(t) are independent.

One can write v(t) = �1=2w(t), wherew(t) is Gaus-
sian with unit variance and independent components.
The observations can then be rewritten as :

x(t) =
�
A �1=2

� � s(t)
w(t)

�
= A0s0(t) (2)

Equation (2) shows that the additive noise can be merged
with the source signals to form a new source vector.
Thus we will assume the model (1) without noise :

x(t) = As(t) =
nX
i=1

aisi(t) (3)

The ai's are the column vectors of matrix A. They
are assumed to be pairwise linearly independent. In
fact, if it exists two proportional columns, for example
ak = �ap, we can then merge sk and sp to form a
new source sk(t) + �sp(t) which will be statistically
independent from the others.

Contrary to [2] and to classical source separation,
it is restrictive to design a matrix that uses x(t) as
input, and provides as output y(t) whose components
are independent. This is in general impossible, and
when it is possible, under some assumptions on the
mixing matrix A, sources can only be separated into
several complementary groups [2].



2. UNIQUENESS OF SOLUTIONS

In underdetermined source separation, there are two
distinct but very dependent issues : identi�ability and
separability. The former discusses the uniqueness of the
rectangular mixing matrix A based on the problem as-
sumptions i.e. statistical independence of the sources.
Separability for its part is concerned by retrieving the
sources, given the observation vector x(t) and given
the matrix A. The two problems can be summarized
by the following uniqueness equation1 :

x = As = By (4)

which formalizes the following question: Does there
exist a couple (y;B) satisfying the same assumptions
(A1,A2) than (s;A) and giving the same observation
vector x ?

� A1: components of source vector (s or y) are
independent.

� A2: mixing matrix (A or B) is full rank and its
column vectors pairwise linearly independent

Here the Darmois-Skitovic theorem [6, 11] (see also [7]
for easier accessibility) is of no help since neither A nor
B are invertible. We will rather extend, for any m, a
more general theorem proved by Darmois for m = 2 in
the same paper [6].

Recall that the characteristic function 'x(u) of a
random variable x always exists and is continuous. Ac-
cording to (4), the characteristic function of x writes
as:

'x(u) = E

�
exp(juTx)

�

=

nY
i=1

'yi(b
T
i u) =

nY
i=1

'si(a
T
i u) 8u 2 Rm (5)

Since 'x(0) = 1 and 'x is continuous, then there exists
a small neigbourhood U of 0 in which 'x does not van-
ish. Denoting log the principal branch of the logarithm
in the right half plane and

 si = log'si and  yi = log'yi 1 � i � n (6)

the second characteristic functions, then for u 2 U we
have :

nX
i=1

 yi(b
T
i u) =

nX
i=1

 si(a
T
i u) (7)

1dependence over time will be omitted since the model is as-
sumed to be instantaneous

According to the pairwise linear dependence between
the columns of A and B, we can consider three cases:

� Suppose that the columns of B are pairwise lin-
early independent with the columns of A, i.e.

8i; j if �ijai + �ijbj = 0 then �ij = �ij = 0 (8)

In (7), replacing u by u + �1 such that bTn�1 = 0 and
substracting (7) from the obtained equation, gives:

n�1X
i=1

��i1 yi(b
T
i u) =

nX
i=1

��i1 si(a
T
i u) (9)

where � denotes the �nite di�erence operator,

�hf(x) = f(x+ h)� f(x);

and

�ik = bTi �k (10)

�ik = aTi �k (11)

In (9), the function  yn disappeared (other di�erences
are non null due to pairwise linear independence). By
induction, we can successively eliminate all  yi , and all
 si except for i = l and get:

��l;2n�1
��l;2n�2

� � ���l1 sl(a
T
l u) = 0; 1 � l � n

This shows that each second characteristic function
must be a polynomial of degree at most 2n � 1 (one
could get better estimates of the degree of these poly-
nomials but it is without great interest here). The the-
orem of Marcinkiewicz [8] shows that these polynomial
can not be of degree greater than 2: x and y are then
Gaussian.

� If there exists a column bl = �ak, using the same
reasonning, we deduce that the functions  yi (i 6= l),
 si (i 6= k) and  yl(�u) �  sk (u) are second order
polynomials. Hence, yi (i 6= l) and si (i 6= k) are
Gaussian, but nothing can be said about yl and sk.
Similar conclusions can be derived if p columns of B
are proportional to p columns of A.

� Now, suppose that all columns of B are propor-
tional to the columns of A, or without loss of general-
ity2 B = A, then (7) becomes :

nX
i=1

( yi �  si)(a
T
i u) = 0 (12)

Using successive �nite di�erences, we get that each
function  yi� si (1 � i � n) is a polynomial of degree
at most n� 1.

In other words, the above discussion summerizes as:

2In the general case B = ADP , where D is a diagonal ma-
trix, and P is a permutation matrix.



� If all sources are non Gaussian, the matrix A is
unique up to a right multiplication by a diagonal
and a permutation matrix.

� If there exists p non Gaussian sources, p columns
of B are necessarily proportional to p columns of
A.

2.1. Non Gaussian sources

In the following, sources are supposed to be non Gaus-
sian. According to above results, (4) becomes:

x = As = Ay (13)

Here the indeterminacies onB are absorbed by y with-
out modifying the independence of its components. When
m = n it is obvious that y = x, the couple (y;B) is
unique (up to the usual indeterminacies).

However, when m < n, y is not unique. Alge-
braically, general solutions are given by:

y = s+ z (14)

where z is an arbitrary vector belonging to Ker(A). In
fact, z can not be arbitrary since its statistical depen-
dence over y will inuence the statistical dependence
between the components of s.

One may �rst notice that if z is independent from
y, then it must be a certain vector. Indeed, by (14) the
characteristic function of y writes as:

nY
i=1

'yi(ui) = 'z(u)
nY
i=1

'si(ui) (15)

which shows that 'z(u) factorizes as the product of
marginal characteristic functions, hence z has inde-
pendent components. Moreover,

Pn
k=1 aikzk = 0 for

0 � i � m. Since a certain random variable is closed
under decomposition (Cram�er [5])3, we deduce that
each zk is certain.

In general, the characterization of z remains an
open problem. However, in some particular situations,
the problem becomes tractable especially for discrete
sources, which are the main support of digital commu-
nications.

2.2. Discrete sources

Suppose each source si takes its values in a �nite dis-
crete set Ci = fs1i ; s

2
i ; � � � ; s

ki
i g. With this a priori in-

formation about the source distribution, one seeks for

3A simple way to see this consists in computing the variance
(when it exists) of

P
n

k=1
aikzk = 0, taking into account that z

has independent components.

a solution y of (13) which is discrete, i.e. each yi takes

its values in C0i = fy1i ; y
2
i ; � � � ; y

k0i
i g. Referring to the

discussion on equation (12), we have:

'yi(u) = 'si(u) exp(Pi(u)) (16)

where Pi is a polynomial of degree n � 1. Replacing
'yi and 'yi by their values leads to:

k0iX
l=1

p(yli) exp(juy
l
i) = f

kiX
l=1

p(sli) exp(jus
l
i)g exp(Pi(u))

(17)

Clearly, Pi must be a polynomial of the �rst order. In
fact, the analytic extension of 'yi is an entire function
whose order4 equals 1, while the right hand side of (17)
is of order n� 1. The general form of this polynomial
is Pi(z) = az + b. Since 'yi(0) = 'si (0) = 1 then
b is necessarily null. Moreover, for any real variable
v, 'yi(jv) = 'si(jv) exp(jav), then a is necessarily a
purely imaginary number. Let Pi(u) = juti where ti is
an arbitrary real, (17) becomes:

k0iX
l=1

p(yli) exp(juy
l
i) =

kiX
l=1

p(sli) exp(ju(s
l
i + ti)) (18)

Since the representation of a function by a trigonomet-
ric polynomial is unique, necessarily ki = k0i. Moreover,
there exists a permutation � of f1; 2; � � � ; kig such that:

yli = ti + s
�(l)
i and p(yli) = p(s

�(l)
i ) (19)

1 � l � ki; 1 � i � n

According to (14), and since s and y are discrete, then
z is discrete too. Moreover:
X
l

p(yli) exp(juy
l
i) =

X
l;r

p(sli; z
r
i ) exp(ju(s

l
i + zri )

(20)

and by using (19):

X
l

p(sli) exp(ju(s
l
i + ti)) =

X
l;r

p(sli; z
r
i ) exp(ju(s

l
i + zri )) (21)

the same argument on uniqueness of trigonometric poly-
nomial representation leads to:

8l; r : sli+z
r
i 2 Ci+ ti = fs1i + ti; s

2
i + ti; � � � ; s

ki
i + tig

4The de�nition of the order of an entire function may be found
in: W. Rudin, Real and Complex Analysis, McGraw-Hill, 1966.



which obviously shows that:

8r : zri � ti 2 Ci � sli ;8l

thus:
8r : zri � ti 2 \ki

l=1fCi � slig

This �nite intersection of sets contains the unique ele-
ment 0. Thus 8r : zri = ti, and z = t is certain.

2.3. Mixed discrete and continuous sources

Suppose there exists n�m discrete sources and m con-
tinuous sources. As seen in the previous section, the
n � m discrete sources can be restored up to a cer-
tain vector t 2 R

n�m . According to (14), z 2 Ker(A)
whose dimension is n �m, and whose n �m compo-
nents are certain and equal to the components of t.
Obviously, this shows that z is a certain vector. Each
source can then be restored up to an additive constant.

This result can be extended to the case where we
have p � n�m discrete sources.

3. CONCLUSION

In this paper, we adress the problem of underdeter-
mined source separation and prove that: non Gaussian
sources can only be restored up to an arbitrary addi-
tive random vector, for discrete sources this vector is
certain. This approach could also be generalized if the
sources number is unknown.

This study proves that source separation is not im-
possible even if there are more sources than observa-
tions. It remains now to design algorithms validating
the theory.
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