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ABSTRACT

Modern speaker verification applications require high accu-
racy at low complexity. We propose the use of a polynomial-
based classifier to achieve this objective. We demonstrate
a new combination of techniques which makes polynomial
classification accurate and powerful for speaker verification.
We show that discriminative training of polynomial classi-
fiers can be performed on large data sets. A prior probability
compensation method is detailed which increases accuracy
and normalizes the output score range. Results are given for
the application of the new methods to YOHO.

1. INTRODUCTION

Recently, speaker verification has become an attractive bio-
metric for implementation in computer networks. Voice ver-
ification has the advantage that it requires little custom hard-
ware and is non-intrusive. One of the needs of current sys-
tems is to obtain reasonable accuracy at low computational
complexity.

Many structures have been proposed for speaker veri-
fication. The two most popular techniques are statistical
and discriminative-training based methods. For the former,
Gaussian Mixture Models (GMM) [1] and HMM systems
with cohort normalization [2, 3] have been the techniques
of choice. For discriminative systems, neural tree networks
and multilayer perceptrons [4] have been commonly used.
In this paper, we propose a new text-independent speaker
verification system based upon a discriminatively-trained
polynomial-based classifier.

Polynomial classifiers have been known in the literature
for many years [5, 6]. Polynomials have excellent properties
as classifiers. Because of the Weierstrass theorem, polyno-
mial classifiers are universal approximators to the optimal
Bayes classifier [7].

Typical methods of training polynomial classifiers have
either been based on statistical methods or minimizing a
mean-squared error criterion. The focus has been on linear
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or second order classifiers. Both of these methods tradition-
ally have had limitations. Statistical methods estimate the
mean and covariance of the speaker data for a parametric
model. The drawback of this approach is that out-of-class
data is not used to maximize performance. Discriminative
methods usually involve large matrices which leads to large
intractable problems.

We propose an approach which makes the discrimina-
tive training separable. This approach makes polynomial
training tractable for large data sets.

Section 2 describes the structure of the polynomial clas-
sifier. Section 3 illustrates the new training algorithm. Sec-
tion 4 shows how a simple method for prior compensation
can be integrated into the training method. Section 5 applies
the method to the YOHO database.

2. CLASSIFIER STRUCTURE

The basic scenario for verification is as follows. An iden-
tity claim is made by a speaker (the claimant). The model
for the claimant is then retrieved. Speech is obtained from
claimant. Feature extraction is performed on the speech.
The features are passed through a classifier to produce a
score. A decision is then made based upon whether the
score is above or below a threshold.

The basic embodiment of this strategy in polynomial
form is shown in Figure 1. The classifier consists of sev-
eral parts. Feature vectors,x1; : : : ;xN are introduced into
the classifier. The vectorp(x) is the vector of polynomial
basis terms of the input feature vector; e.g., for two features,
x =

�
x1 x2

�t
and second order, the vector is given by

p(x) =
�
1 x1 x2 x21 x1x2 x22

�t
: (1)

In general, the polynomial basis terms of the form

xi1xi2 : : : xik (2)

are used wherek is less than or equal to the polynomial
order,K. The speaker model is given byw. For each input
feature vector,xi, a score is produced by the inner product,
wtp(xi). The score is then averaged over time to produce
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Figure 1: Polynomial classifier for verification.

the final output. The total score is then

s =
1

N

NX
i=1

wtp(xi): (3)

Viewed in another manner, we are averaging the output of a
discriminant function [5] over time.

The accept/reject decision for the system in Figure 1 is
performed by comparing the output score (3) to a threshold.
If s < T , then reject the claim; otherwise, accept the claim.

3. TRAINING METHOD

In order to obtain good separation between classes for the
system in Figure 1, we use discriminative training with a
mean-squared error criterion. For the speaker’s features an
output of1 is desired. For impostor data, an output of0 is
desired. The resulting problem is

w� = argmin
w

�NspkX
i=1

��wtp(xi)� 1
��2 +

NimpX
i=1

��wtp(yi)
��2 �:

(4)

Here, the speaker’s training data consists ofx1; : : : ;xNspk
,

and the example impostor data consists ofy1; : : : ;yNimp
.

The training method can be written in matrix form. First,
defineMspk as the matrix whose rows are the polynomial
expansion of the speaker’s data; i.e.,

Mspk =

2
6664

p(x1)
t

p(x2)
t

...
p(xNspk

)t

3
7775 : (5)

Define a similar matrix for the impostor data,Mimp. Define

M =

�
Mspk

Mimp

�
: (6)

The problem (4) then becomes

w� = argmin
w

kMw� ok2 (7)

whereo is the vector consisting ofNspk ones followed by
Nimp zeros (i.e., the ideal output).

The problem (7) can be solved using the method of nor-
mal equations [8],

MtMw =Mto: (8)

We rearrange (8) to

�
Mt

spkMspk +Mt
impMimp

�
w =Mt

spk1 (9)

where1 is the vector of all ones. If we defineRspk =
Mt

spkMspk and defineRimp similarly, then (9) becomes

(Rspk +Rimp)w =Mt
spk1: (10)

Our new training method is based on (10). There are
several advantages to this approach. First, the matricesRimp

andRspk are fixed in size; i.e., they do not vary with the
size of the training data set. LetMterms equal the num-
ber of terms inp(x), thenRimp andRspk are matrices of
sizeMterms � Mterms. Second, the computation is par-
titioned. We can calculateRspk andRimp separately at
costs ofO(NspkMterms

2) andO(NimpMterms
2), respec-

tively. The calculation of these two matrices is the most
significant part of computation. Note thatRimp can be pre-
computed and stored. Third, the terms in the right-hand side
of (10) can be calculated as a submatrix ofRspk. We denote
the resulting vector,aspk.

One potential drawback of the method should be noted.
Since the normal equation method squares the condition
number of the matrixM, it might be thought there would
be problems solving (9). In practice, this squaring has not
caused solution instability. Many linear approximation prob-
lems have large condition numbers (e.g., linear FIR filter
design), but yield good results.

The matrixRspk (and its impostor counterpart) in (10)
has many redundant terms. In order to reduce storage and
computation, only the unique terms should be calculated.
The terms inRspk consist exactly of sums of the polynomial
basis terms of order� 2K. We denote the terms of order
� 2K asp2(x). Table 1 shows the number of unique terms
inRspk for 12 features and different polynomial orders. The
resulting training algorithm is shown in Table 2.

Table 1: Term Redundancies for the MatrixRspk.
Order Terms inRspk Unique Terms Ratio

2 8,281 1,820 4.55
3 207,025 18,564 11.15
4 3,312,400 125,970 26.30

The redundancy inRspk is very structured. Suppose we
have the polynomial basis terms of orderk, and we wish to
calculate the terms of orderk + 1. Assume that every term
is of the form (2) wherei1 � i2 � � � � � ik. If we have
thekth order terms with end term havingik = l as a vector
ul, we can obtain the(k + 1)-th order terms ending with



Table 2: Training Algorithm.
1) Letrimp = 0 andi = 1.
2) Retrieve feature vectoryi from background set of im-

postors.
3) Letrimp = rimp + p2(yi).
4) Let i = i + 1. Goto step 2 until all impostor feature

vectors are processed.
5) Repeat steps 6 to 13 for each speakerk.
6) Setrspk;k = 0 andi = 1.
7) Retrieve feature vectori, xk;i, for speakerk.
8) Letrspk;k = rspk;k + p2(xk;i).
9) Let i = i + 1. Go to step 7 until all of speakerk’s

feature vectors are processed.
10) Map rspk;k to Rspk, rspk;k to aspk;k, and rimp to

Rimp.
11) ComputeR = Rspk +Rimp.
12) Compute the Cholesky decomposition ofR, R =

LtL.
13) Solve forwspk;k by using a triangular solver twice on

LtLwspk;k = aspk;k.

ik+1 = l as

2
6664
xlu1
xlu2

...
xlul

3
7775 : (11)

We can then constructp(x) as follows. Initialize a vector of
1 and the first order terms. Then recursively calculate the
(k + 1)-th order terms from thekth using (11). Concate-
nate the different orders to get the final result. One can then
plot the index of terms in the vectorp2(x)versus the index
of the terms in the matrixRspk. We index the elements in
Rspk as a one-dimensional array using column major form.
The resulting plot is shown in Figure 2 for8 features and
a polynomial order of3. Note the interesting self-similar
structure. This structure becomes more detailed as the poly-
nomial order is increased.

4. PRIOR COMPENSATION

The prior probabilities of the speaker training set and impos-
tor training set are usually imbalanced because much more
impostor data is available. There are several approaches to
this problem including balancing the amount of data that
the training algorithm sees per epoch and division of the
classifier output by priors, see [9]. We propose a different
approach incorporated into the training algorithm.

In order to compensate for the prior probabilities, we
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Figure 2: Plot of index of term inp2(x) versus index in
Rspk.

weight the criterion in (4) as follows:

w� = argmin
w

�
1

Nspk

NspkX
i=1

��wtp(xi)� 1
��2

+
1

Nimp

NimpX
i=1

��wtp(yi)
��2 �:

(12)

The effect of this weighting is twofold. First, overtraining
is reduced. The contribution to the total mean-squared error
is equalized out in (12). Second, the score range is normal-
ized. This normalization has the effect that as the amount
of impostor data is increased, the score range stays approx-
imately the same.

The prior compensation can be easily incorporated into
the training algorithm. The new problem becomes

w� = argmin
w

kDMw �Dok2 (13)

whereD is a diagonal matrix. The method in Table 2 is
easily adapted to the new training equation (13).

5. RESULTS

We applied our method to the YOHO speaker verification
database [10, 11]. YOHO uses prompted combination lock
phrases, e.g., “26-81-57.” YOHO has four enrollment ses-
sions with24 phrases per session. Verification consists of
10 sessions with4 phrases per session.

Feature analysis was performed by using12th order LP
analysis on a30 millisecond frame every10 milliseconds.
Each frame was pre-emphasized with the filter1�0:97z�1,
and a Hamming window applied to the result. From the LP



coefficients,12 LP cepstral coefficients (LPCC) and delta-
cepstral coefficients were produced.

For enrollment, all4 sessions of YOHO were used. For
one-phrase verification, all40 utterances per speaker were
used. For four-phrase verification, we grouped all phrases
within a session. The classifier in Figure 1 was used in text
independent mode. That is, one model was generated per
speaker without using knowledge of the particular text spo-
ken.

Table 3 shows a comparison of the average equal er-
ror rate (EER) for the classifier at different orders. Prior
compensation, see Section 4, and the algorithm in Table 2
were used. The average EER was computed by finding the
EER for each speaker and then averaging across all speak-
ers. Note that the performance of the new technique com-
pares favorably to other systems [11]. The best compromise
between accuracy, computation, and storage appears to be
the3rd order system which has455 model parameters and
18564 entries inp2(x).

Table 3: Classifier performance on the YOHO database.

cep dcep order Avg. EER% Avg. EER%
1 phrase 4 phrase

12 - 2 3.62 0.90
12 - 3 1.52 0.28
12 - 4 1.00 0.14
12 12 2 1.81 0.32

To illustrate the effect of prior compensation on accu-
racy, we trained without the weighting in (13). For the
4 phrase test, 12 cepstral coefficients, and3rd order, the re-
sulting average EER was0:37%; i.e., a decrease in accuracy
over the weighted case was observed. The prior compensa-
tion normalized the score range, so that typical EER thresh-
olds were around0:5.

One concern about the YOHO database is the lack of a
background separate from the verification population. Our
original enrollment and verification strategy used all138
speakers for training and testing. We also tried enrolling the
first 69 speakers and second69 speakers separately. Speak-
ers1 through69 were trained only against1 to 69; speak-
ers70 through138 were trained only against speakers70
through138. Verification was performed by using the sec-
ond69 speakers as impostors for the first69 and vice versa.
The resulting1 phrase EER for12 cepstral coefficients and
3rd order was1:63%. The result is close to the one shown in
Table 3; this test shows that the polynomial classifier works
well with an unknown impostor set. The comparison be-
tween the two training approaches is not entirely valid since
a larger training background and a larger number of impos-
tors is available for the case in Table 3.

6. SUMMARY AND CONCLUSIONS

A new method of applying a polynomial classifier to speaker
verification was shown. Algorithms were presented to deal
with large amounts of data as well as efficiently train speaker
verification models. These techniques were applied to the
YOHO database showing that the resulting system achieved
excellent verification performance at low complexity.
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