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ABSTRACT

The paper describes a simple yet highly accurate multi-layer
feed-forward neural network classifier (based on the back-
propagation algorithm) specifically designed to successfully
distinguish between normal and abnormal higher-order
statistics features of electrocardiogram (ECG) signals. The
concerned abnormality in ECG is associated with ventricular
late potentials (LP’s) indicative of life threatening heart
diseases. LP’s are defined as signals from areas of delayed
conduction which outlast the normal QRS period (80-100
msec). The QRS along with the P and T waves constitute the
heart beat cycle. This classifier incorporates both pre-
processing and adaptive weight adjustments across the input
layer during the training phase of the network to enhance
extraction of features pertinent to LP’s found in 1-d
cumulants. The latter is deemed necessary to offset the low
S/N ratio in the cumulant domains concomitant to performing
short data segmentation in order to capture the LP’s transient
appearance. In this paper we summarize the procedures of
feature selection for neural network training, modification to
the back propagation algorithm to speed its rate of conversion,
and the pilot trial results of the neural ECG classifier.

1. INTRODUCTION

The relationship between myocardial infarction (MI) and
short-duration high-frequency components occurring around
the terminal end of the QRS complex in the cardiac cycle of
the ECG (Figure 1) has been investigated by a number of
dedicated research workers ([1] and references therein). The
high frequency components are associated with late potentials
(LP’s) emanating from areas of delayed conduction and
outlast the normal QRS period (80-100 msec). LP’s are linked
with malignant ventricular tachycardia (VT) after a
myocardial infarction (dead zone or scar tissue in the
ventricular muscle). The later is highly correlated with sudden
cardiac death.

Common methodology for detecting LP’s in the time domain
involves temporal scanning of the S-T region (Figure 1) of the
cardiac cycle and relies upon accurate identification of the
QRS boundaries [2]. The detection problem is exacerbated by
the fact that LP’s are relatively very weak (micro-volts) and
very often below the noise floor. In the frequency domain,
second- order statistics can offer only a limited success. The
shapes of power spectra of normal and abnormal (malignant
VT) ECGs are invariably broadly similar and without
significant features above the noise floor, at approximately

Figure 1: A diagrammatic illustration of the ECG
waveforms and definitions.

-70 dB [3]. This is not surprising since LP’s are essentially
non-linear transient events [1] and consequently interact with
the inherent non-linearity of the cardiac waves as well as
certain class of recursive non-linearity attributed to external
factors such as motion artifact [3,4,11].

We have shown in previous publications [3-6] that results
obtained using higher-order statistics (HOS) indeed offer
some empirical evidence that: (i) ECG signals contain
intrinsic as well as quadratic and higher-order non-linearities,
(ii) the QRS wave is predominantly linear non-Gaussian [7],
the P and T waves are characterized by having quadratic and
cubic non-linearities, (iii) the QRS wave can be totally
resolved from the motion artifact in the bispectrum domains
and (iv) disproportionately high-frequency non-linearity in the
bicoherence squared is indicative of abnormality in an
otherwise innocent looking ECG [3]. However, it is very
important to emphasize that non-linear filtering and a high
resolution technique such as the spectral MUSIC incorporates
an optimized window must be applied to a short duration data
sample (without compromising the variance), prior to the
application of HOS [3,4]. Third-order Volterra filtering
applied to raw data can be beneficial in isolating quadratic
and cubic non-linearity in the higher-domains [3,10].

In this contribution, and in the same spirit as our recent
works, the higher-order statistical features are selected and
enhanced using sampled weights of a non-linear function
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based on a priori information about distinguished abnormality
signatures in the higher domains. The function is modified
adaptively during the training of the neural network which
employs ten 1-d cumulants every 1000 or less cycles per
patient. After this the updated version of the function
parameters are fixed over the next 1000 cardiac cycles.
Subsequently, a simple neural network classifier based on a
modified version [8,9] of the back-propagation algorithms
performs accurate LP’s and even ischemic ECG classification.

The paper is organized as follows: In section 2, a summary of
the procedures of feature selection and enhancement for
neural network training is given. Design of the neural network
classifier which incorporates (a) block adaptive weight
adjustment across the input layer, and (b) modification to the
back-propagation algorithm to speed its rate of convergence is
described in section 3. In section 4, experimental results
obtained from conducting a pilot study on normal and
abnormal subjects and employing the neural ECG classifier
are documented. Finally to demonstrate the effectiveness of
the neural classifier a brief comparative evaluation of the
back-propagation- and recurrent back-propagation-based
networks is concluded.

2. HIGHER-ORDER STATISTICS
FEATURE SELECTION AND

ENHANCEMENT

The experimental setup consists of an ECG monitor, interface
card and a workstation. Raw ECG data are measured using
three orthogonal surface electrodes, sampled at 500Hz and fed
to the computer which performs the following operations.

1. Accurate on-line QRS detection [7]. This involves
Volterra whitening filters in the time domain or/and the
high-resolution spectral MUSIC in the frequency domain
[7]. Positions of ECG peaks (R points in Figure 1) are
pinpointed in the time domain (further details can be
found in [7]).

2. The MUSIC algorithm incorporates 2 sliding sets of
three overlapping Kaiser windows and adaptive
thresholding operations which not only pinpoint the
high-level low-frequency QRS spectral peaks
(LFQRSSPs) per cycle, but also performs the
preliminary spotting of the low-level high-frequency late
potential components over a range of frequencies from
100-250 Hz. Detection of late potential high-frequency
spectral peaks is carried out off-line every 5 LFQRSSPs
to allow appropriate segmentation between the R-R
marking in the time domain processing which runs
almost synchronizingly with the MUSIC routine. A
detailed procedure for segmentation is beyond the scope
of this paper [11] since it involves calculating the
bicoherence squared and mapping a particular region for
each individual segment to confirm existence of
quadratic non-linearity before moving on to interrogate
another segment or skip a few segments up to the next R
peak. This controlled skipping helps to avoid the highly
non-linear T wave of the present cycle and the P wave of
the adjacent one (Figure 1).

3. The Volterra filtering can be used to partially suppresses
motion artifact only in those cases of missing

(a)

(b)

Figure 2: Typical third-order cumulants and their 1-d
diagonal and wall slices shown in insets (left, right) of
(a) a normal subject and (b) a subject confirmed of
having infarction in the ventricular muscle.

       LFQRSSPs [7] and the MUSIC routine is repeated over
the same cardiac cycle for confirmation of the presence
or absence of QRSs. Again, this has been found to be
only necessary in extreme cases and in the absence of
QRS waves (ventricular fibrillation).

4. Off-line calculations of the cumulant diagonal and wall
1-d slices are performed on those segments suspected of
having LP’s as depicted in Figure 2. It is clearly seen
that abnormality is manifested in the eminent ‘petal
pattern’1 [11].

5. An arbitrarily chosen non-linear function modifies the
envelope of the so-called ‘petal pattern’ to enhance its
peculiarity against background artifact.

6. The non-linear function is then sampled across the input
layer of the neural network to be described in the
following section.

                                                       
1 We are the first to discover the petal pattern (a horizontal
slice has a petal shape) in the cumulant domains. Five
thousand cardiac cycles of normal and abnormal ECGs were
put to the test.



               

E C G
P re -

P r o c esso r

1

2

3

3 -d  p ic tu re  o f th e  fea tu r e
en h a n cem en t fu n ctio n .

O n ly  1 -d  s lice  fu n ction  is
s a m p le d  ac ros s  th e  in p u t
la ye r .

In p u t       F ir st          S ec on d         O u tp u t
la y er         h id d en        h id d en         lay er

                 lay er           lay er

(a) (b)

Figure 3: Architecture of the 4-layerd neural network. (a) Neuron or processing unit in the network. (b) The four-layer
neural network. Only 1-d slice of the weight function modifies the corresponding cumulant slice.

3. DESIGN OF THE NEURAL
CLASSIFIER

In this section, we describe the 4-layer network (input layer,
two hidden layers and output layer) used in the study reported
here. Figure 3 shows the network preceded by a preprocessing
unit which performs the difficult task of determining a set of
meaningful and representative features in the HOS domains.
Ordinarily, a sigmoid logistic function is used to describe the
input-output relation of the non-linear device. The neural
network is designed to classify two classes; normal and
abnormal third-order cumulants. The combined use of
skewness (from the third-order cumulants) and kurtosis (from
the fourth-order cumulants) can provide more accuracy in
difficult cases but are not considered here. In particular, we
have found the utility of the diagonal slice of the fourth-order
cumulant can be of more help when used in the desired
response for the third output. The use of higher orders than
the third statistics, however, adds more complexity to the
network and is currently being investigated for other types of
abnormality. Therefore, the use of the third output terminal
does not apply in this communication.

3-a Block Adaptive Weight Adjustment

Initially we attempted to obtain the classification by feeding
cumulant slices of short ST segments of the order of 10-30
samples at 500 Hz sampling rate. This attempt was 80%
successful as the network missed low profile ‘petal patterns’
with low levels of signal-to-noise ratios in their vicinity as a
result of short data segmentation. We then introduced the
following function to strengthen the relative magnitude of the
discriminant cumulant slice features.

.0)1()( βα ≤≤−= − xexf x (1)

The above function is sampled across the input layer and its
parameters (α,β) can be adaptively changed for each cumulant

slice fed during the training phase which usually takes up to
10 modified cumulant slices every 1000 cardiac cycles.
Obviously the shape of function can be changed to cater for
other types of abnormalities (will be reported in another
publication due to lack of space).

3-b Modification to the back-propagation
algorithm

The back propagation method [9] used in the supervised
learning of a multi-layer neural network is basically a gradient
descent method. Although this method has become the most
popular learning algorithm for multi-layer networks, its rate of
convergence is often found to be too slow for practical
applications. Therefore, we have adopted two well established
methods [8,9].

In the modified back-propagation method, every weight wij in
the network is given its own learning rate ηij, and the training
data set is divided into a number of epochs each containing K
training patterns (training patterns are 1-d cumulants from
overlapping segments of the ST region). The weight wij and
learning rate ηij are updated every time after an entire training
epoch (10 cumulants) has been presented to the network. The
weight and learning rate updating rules of the modified back-
propagation algorithm can be summarized as follows [8,9]
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The index n refers to the nth epoch in the training data; the
index k refers to the kth pattern in an epoch containing K
patterns; δkj is the modulated error signal of neuron j with the
kth pattern in an epoch; yki refers to the actual computed
output of neuron I with the kth pattern in an epoch; εk is the
index performance to be minimized by the weight update rule
with the kth input pattern; finally, Ω, Φ, and Θ (all of which
have values between 0 and 1) are the control parameters.

4. EXPERIMENTAL PILOT
RESULTS

Three orthogonal leads ECG were recorded from several
subjects confirmed of having VT with a prior myocardial
infarction (MI). Two subjects suspected of having MI but
time- and frequency-domains analysis had not shown any
abnormality, and several normal subjects. A total of 3,000
cardiac cycles for this pilot studies. Their feature extraction
and enhancement were performed as described in section 3.
The parameter α and β of the exponential weight function
applied across the input layer were chosen to fall in the region
of 1-2 for α, and 0.25 – 0.5 respectively.

Some aspects of the training phase are briefly described in
section 3-a. The initial learning rate ηij(0) were all chosen to
be 0.06. The momentum factor, α, was fixed at 0.09. The
control parameters β, Φ and Θ were chosen to be 0.03, 0.1
and 0.5 respectively.

The classifier described here achieved very high (96%)
classification rate. The remaining 4% failure mainly arose
because the MI suspected cases were not invasively examined
and confirmed at the time of writing this paper.

5. CONCLUSIONS

In this paper, we have presented the results of a pilot study
aimed at the non-invasive classification of a particular type of
ECG abnormality, namely, late potentials. This has been
achieved by the prudent use of their third-order cumulant 1-d
slices. A four-layer neural network classifier based on
modified back-propagation algorithm and incorporating
adaptive feature enhancement weights applied to its input
layer during its learning phase has been successfully tested.
Classification rate obtained from 3000 cardiac cycles of
normal, confirmed, and suspected abnormal subjects is 96%.
In a separate study conducted on the same data a sophisticated
recurrent back-propagation network achieved less that 80%
success rate. However, the instability issues of the latter
network has not been fully investigated.
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