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ABSTRACT

The super-exponential algorithm is a block-based tech-
nique for blind channel equalization and system identi�-
cation. Due to its fast convergence rate, and no a pri-
ori parameterization other than the block length, it is a
useful tool for linear equalization of moderately distortive
channels. This paper presents a recursive implementation
of the super-exponential algorithm for fractionally-sampled
PAM signals. Although the resulting algorithm is still
block-based, recursive propagation of several key variables
allows the block length to be signi�cantly reduced without
compromising the algorithm's accuracy or speed, thereby
enhancing its ability to track channel variations. The con-
vergence rate is only mildly inuenced by speci�c channel
responses, and oversampling provides smaller output vari-
ance and almost perfect tolerance to sampling errors. Simu-
lation results demonstrate the e�ectiveness of the proposed
technique.

1. INTRODUCTION

Intersymbol interference (ISI) is a major source of distortion
in high speed digital communications over frequency selec-
tive channels. Blind equalization is a processing technique
whose aim is to approximately invert the channel using only
its output and some prior knowledge of the source statistics
or input alphabet structure.
Blind equalization algorithms that rely on (implicit) com-

putation of higher-order statistics (HOS), such as CMA,
have been commonly used due to their simplicity, despite
a relatively slow convergence rate. Recently, several algo-
rithms that are closely related to CMA have signi�cantly
improved the convergence rate with modest computational
increase [4, 8]. The class of HOS algorithms proposed by
Shalvi and Weinstein, that explicitly maximize cumulants
at the equalizer output, have also found wide acceptance
[6]. In addition to the recursive/sequential algorithms of
[6], Shalvi and Weinstein also proposed a class of iterative
block processing algorithms based on a similar cost func-
tion [7]. These super-exponential algorithms converge at a
very fast rate; typically, approximate steady-state solutions
are obtained in less than ten iterations for su�ciently large
data blocks.
The main purpose of this paper is to present a recursive

implementation of the super-exponential algorithm and to
show that it has important advantages when compared with
other popular blind equalizers. Strictly speaking, this is not
a sequential algorithm since data blocks are still used, and
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the equalizer parameters are not updated once per symbol
interval. However, each input sample vector is processed
only once, and blocks of input or output samples need not
be stored, hence reducing the memory requirements of the
algorithm. A reduction in block size is possible since several
algorithmic quantities are propagated from one block to the
next, which helps to decrease the transient behavior.
The resulting recursive algorithm displays a fast conver-

gence rate when compared with other alternatives such as
CMA, and the selection of a step size is handled trans-
parently. This kind of self-tuning ability is especially rel-
evant for practical applications with widely varying chan-
nel responses. This recursive super-exponential algorithm
uses the generalization for fractionally-spaced sampling de-
scribed in [2], which allows the equalizer to share many of
the desirable properties of decision-directed FSE's.

2. BACKGROUND

Vectors and matrices will be represented by lowercase bold-
face and uppercase boldface letters, respectively. The nota-
tions (�)T , (�)� and (�)H stand for transpose, complex con-
jugate and hermitian (conjugate transpose).

2.1. Data Model

A baseband representation of the received signal is consid-
ered, in which the transmitted symbols a(k) belong to a pos-
sibly complex discrete alphabet. After the received signal
has been demodulated, �ltered, and fractionally sampled at
L times the symbol rate, the following discrete single-input
multiple-output (SIMO) model is applicable [2]

y(i)(n) =

+1X
k=�1

a(k)h
(i)
n�k+ �

(i)(n) ; i = 0; : : : ; L� 1 : (1)

In (1), y(i)(n) denotes the observed sequence in the i-th

channel , and h
(i)
n is the corresponding discrete impulse re-

sponse. The additive noise sequence is denoted by �(i)(n).
The output of a fractionally-spaced equalizer is obtained

by �ltering each channel with an FIR �lter c
(i)
n and summing

the L contributions. In a �nite equalizer, the coe�cient

vector for channel i is de�ned as c(i) = [c
(i)

N
(i)
1

: : : c
(i)

N
(i)
2

]T ,

N
(i)
1 � N

(i)
2 , with an associated data vector

y(i)(n) = [y(i)(n�N
(i)
1 ) : : : y(i)(n�N

(i)
2 )]T : (2)

The equalizer output is given by the inner product z(n) =
cTy(n), where c and y(n) are obtained by stacking

c(0); : : : ; c(L�1) and y(0)(n); : : : ;y(L�1)(n). The equalizer

order will be denoted by N =
P

i
N

(i)
2 �N

(i)
1 + 1.



2.2. Fractional Super-Exponential Algorithm

The super-exponential algorithm iteratively processes a
block of Nt symbols using a two-step procedure. The
�rst step computes an unnormalized coe�cient vector that
projects an ideal nonlinear memoryless transformation of
the unknown total impulse response coe�cients (from
source to equalizer output) onto the reachable space of the
equalizer [7]. This operation typically brings the total re-
sponse very close to an impulse in a few iterations. The
second step is just a normalization that ensures constant
power at the equalizer output. In terms of measurable cu-
mulants, the iteration is expressed as [2]:

c0(k) = R�1d(k) ; c(k) =
c0(k)

kR
1
2 c0(k)k

; (3)

where R = ��2a Efy(n)yH(n)g is the normalized covariance
matrix and d(k) is obtained by concatenating the nonlinear

transformation vectors d(0)(k); : : : ;d(L�1)(k), whose l-th el-
ement is

d
(i)
l (k) =

cum(z(n); z(n); z�(n); y(i) �(n� l))

Ca
2;2

: (4)

The denominator of (4) is the fourth-order cumulant Ca
2;2 =

cum(a(n); a(n), a�(n); a�(n)), which is negative in the sig-
nal constellations of interest.

3. RECURSIVE ALGORITHM

Using the cumulant to moments formula [5], a generic
fourth-order cumulant of zero-mean random variables is
written in terms of joint expectations as

cum(x1; x2; x3; x4) =

E fx1x2x3x4g �E fx1x2gE fx3x4g

�E fx1x3gE fx2x4g �E fx1x4gE fx2x3g : (5)

Applying (5) to each element of d, this vector may be ex-
pressed as a crosscorrelation

Ca
2;2d = E

�
jz(n)j2z(n)y�(n)

	
� �E

�
jz(n)j2

	
E fz(n)y�(n)g

= E
��

jz(n)j2 � �E
�
jz(n)j2

	�
z(n)y�(n)

	
�
= E f z(n)y

�(n)g ; (6)

where � = 3 for real signals and � = 2 in the complex
case. The latter value of � assumes that Efz2(n)g = 0
for an arbitrary impulse response, which means that the
input constellation must satisfy Efa2(n)g = 0. The discrete

sequence  z(n) =
�
jz(n)j2 � �E

�
jz(n)j2

	�
z(n) is obtained

by applying a nonlinearity to the equalizer output. Note
that the exact normalization of c in the batch algorithm
of section 2. guarantees that Efjz(n)j2g = Efja(n)j2g; then
 z is essentially the same �xed memoryless function used in
Godard's algorithm  (z(n)) = (jz(n)j2 �K)z(n), possibly
di�ering only in the constant K that causes a scaling e�ect
in the output constellation [1]. It should also be remarked
that a function  z may be de�ned for complex signals even
if the assumption Efa2(n)g = 0 is not valid, such as in
binary PSK. However, the resulting algorithm is much more
sensitive to phase jitter and carrier frequency o�set.

When other than fourth-order statistics are used in the
super-exponential algorithm, the joint cumulants that com-
prise d are still linear in y(i)(n). Then, this vector may
still be written as a crosscorrelation between y(n) and an
order-dependent nonlinear function as in (6). Hence, the
basic approach used in the recursive implementation can
be easily extended to non-CMA equalization.

3.1. RLS Estimation of the Coe�cient Vector

Taking into account the expression for d developed in (6), c0

in (3) is seen to be the least-squares solution to the problem

c0(k) = argmin
c
E

(����Ca
2;2

Ca
1;1

cTy(n)�  z(n)

����
2
)
: (7)

The scale factor Ca
2;2=C

a
1;1 is largely irrelevant because c0

will be subsequently normalized, and its sign is the only
higher-order a priori statistical knowledge about the source
that needs to be considered. Therefore,  z(n) is rede�ned
as

 z(n) = sgn(Ca
2;2)

�
jz(n)j2 � �E

�
jz(n)j2

	�
z(n) ; (8)

and a scaled c0 is found as the solution of

c0(k) = argmin
c
E
n��cTy(n)�  z(n)

��2o : (9)

Even if sgn(Ca
2;2) is not included in (8), it may only cause

a sign reversal in c0, and therefore in the equalizer output.
Since the super-exponential algorithm does not guarantee
an absolute phase reference, any further �1 ambiguity is
immaterial and the channel will still be correctly equalized.
However, sign reversals are very important in the recursive
algorithm due to the nature of the initialization procedure
described below.
In a practical implementation, cumulants are estimated

using sample averages [5]. Then c0(k) is given by the so-
lution to the (weighted) time average over the Nt input
vectors and output symbols in the k-th block1:

c0(k) = argmin
c

NtX
n=1

wNt�n
��cTy(n)�  ̂z(n)

��2 ; (10)

where 0 < w � 1 is a forgetting factor that allows more ef-
fective tracking of time variations in the impulse response,

and  ̂z is an estimate of  z. This expression may be recog-
nized as a form of CMA with exponential window RLS-type
updating within a data block.
The normalization step of this super-exponential itera-

tion is not performed explicitly, that is, the coe�cients c(k)
need not be computed. Instead, the unnormalized equal-

izer output z0(n) = c0
T
y(n) is divided by an estimate of its

power to obtain the desired sequence z(n). Then, the re-
cursive super-exponential algorithm essentially consists on
repeated evaluation of (10) in consecutive data blocks.
The RLS algorithm is used to recursively �nd the optimal

coe�cients in (10) when the block length ranges from 1 to
Nt symbols and, in this sense, provides much more informa-
tion than what is actually needed. However, the availability
of intermediate coe�cient vectors and output errors within
a data block may be helpful in establishing whether the

1At the end of a data block it is assumed that the time index
n in (10) is reset to 1.



RLS solution has reached steady-state. When coupled with
a cumulant accuracy assessment, this information can be
used as part of an adaptive block length selection scheme
that is conceptually similar to dynamic step adaptation in
standard steepest descent algorithms.

3.1.1. RLS Initialization

In each iteration, the super-exponential algorithm takes
an in�nite step along the corrected gradient direction of a
cost function de�ned in total impulse response space [7]. It
is observed that an in�nite step may only be used in prac-
tice when reliable cumulant estimates are available, which
requires time averaging in data blocks that span close to
a thousand symbol intervals. If smaller block lengths are
desired, i.e., if the equalizer parameters are to be adjusted
more often, then some kind of memory must be introduced
among blocks, so that the e�ective block length used for
cumulant estimation is large enough. This is accomplished
by a suitable initialization strategy for the sample data co-
variance matrix �, the unnormalized coe�cient vector c0,
and the estimated unnormalized power. In block k, these
variables are initialized with the corresponding values at
the end of block k� 1, thus reducing the transient response
in both the RLS input sequence and the weight adaptation
process itself. As a result, only a relatively small number
of points will be required before the RLS algorithm can im-
prove the solution obtained in the previous block, given the
new data.

3.2. Estimation of the Reference Sequence  ̂z
Similarly to [6], the power estimate of the unnormalized
output z0(n) is based on an exponentially-weighted time
average with forgetting factor 0 < � � 1,

hjz0j2in = �hjz0j2in�1 + (1� �)jz0(n)j2 : (11)

De�ning the power ratio 0(n) = hjz0j2in=C
a
1;1, a normalized

output can be simply obtained as z(n) = z0(n)0
� 1

2 (n). The

nonlinear function  ̂z, based on time averaging rather than
ensemble averaging, acts on this sequence to produce

 ̂z(n) = sgn(Ca
2;2)

�
jz(n)j2 � �hjzj2in

�
z(n) : (12)

Due to normalization and estimation errors, the time aver-
age hjzj2in evaluated as in (11) will not equal Ca

1;1, although
this identity will tend to be more closely approximated as
additional samples in a data block are received. Then, ei-
ther hjzj2in in (12) should be de�ned as Ca

1;1, or a second
power tracking recursion should be used. The former ap-
proach is preferred, leading to the following nonlinearity

which condenses the normalization and computation of  ̂z:

 ̂z0(n)
�
= sgn(Ca

2;2)
�
jz0(n)j2 � �hjz0j2in

�
z0(n)0

� 3
2 (n)

=  ̂z(n)
��
z=z00

�
1
2
: (13)

Unlike the covariance matrix, initializing hjz0j2i with the
�nal value from the previous block is just an approximation
because the statistics of z0(n) change when c0 is updated.
However, since the average power is similar even in the �rst
few blocks, when c0 is far from its steady-state value, this
technique is useful in reducing the transient duration and
amplitude. Naturally, transients in hjz0j2in will have direct
consequences in the convergence speed of the RLS algorithm

through the reference signal  ̂z0(n).

Table 1. Recursive Super-Exponential Algorithm

c0(0) = �0; �(0) = �IN ; (0) = jCa
2;2=C

a
1;1j

2

for k = 1:Nblocks

w(0) = c0(k � 1); P(0) = ��1(k � 1)
hjz0j2i0 = Ca

1;1(k � 1)

for n = 1:Nt

y(n) = GetSamples()

z0(n) = c0
T
(k � 1)y(n)

hjz0j2in = �hjz0j2in�1 + (1� �)jz0(n)j2

0(n) = hjz0j2in
Ca
1;1

 ̂z0(n) = sgn(Ca
2;2)

�
jz0(n)j2 � �hjz0j2in

�
z0(n)0

� 3
2 (n)

[w(n);P(n)] = RLS( ̂z0(n);y(n);w(n� 1);P(n� 1))

z(n) = z0(n)�
1
2 (k � 1)

end

c0(k) = w(Nt); �(k) = P�1(Nt); (k) = 0(Nt)

end

3.3. Computational Complexity

The complete recursive super-exponential algorithm is sum-
marized in table 1. In addition to the estimated power ratio
0(n), a second variable (k), which equals 0(Nt) at the end
of block k, is de�ned. It is used to generate a normalized

equalizer output z0(n)�
1
2 (k�1) which does not su�er from

transient behavior because it only depends on parameters
c0(k � 1) and (k � 1) that are kept �xed in the current
data block.
As pointed out in [7], if the block length is consider-

ably larger than the equalizer order, Nt � N , then the
main computational burden of the nonrecursive algorithm
(3) is due to repeated evaluation of z(n) and the cumulant
vector d. At each symbol interval, approximately 2N + 2
add/multiply operations are required, which is roughly the
complexity of LMS. Regarding the recursive algorithm of ta-
ble 1, generation of z0(n) at each instant n requiresN opera-
tions. Updating the power estimate, normalizing the equal-
izer output and computing the nonlinear function requires
only 2 additions, 1 square-root and about 10 products. Up-
dating the RLS variables is clearly the most time-consuming
task, requiring O(N2) operations for a basic RLS algorithm.
Using fast RLS techniques will lower the requirements to
O(NL2) or O(NL), depending on speci�c algorithms [3],
but even for L = 1 the complexity will always far outweight
that of the remaining steps in the super-exponential loop.
It can therefore be concluded that the proposed algorithm
is essentially equivalent to multichannel RLS in terms of
computational cost.

4. SIMULATION RESULTS

Multipath channel: In the �rst simulation, a binary
source transmits i.i.d. symbols from the discrete alphabet
f�1;+1g. The data modulate a sequence of raised cosine
pulses, p(t), with 11% rollo� and truncated by a rectangu-
lar window outside a six-symbol interval [�3Tb; 3Tb]. The
transmitted signal propagates through a three-ray multi-
path channel, generating a continuous received pulse shape
hc(t) = p(t)+0:8p(t� 0:25Tb)� 0:4p(t� 2Tb). The input is
sampled at time t = nTb=L. White noise is added to the dis-
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Figure 1. MSE evolution with variable block length
(a) Nt = 200 (b) Nt = 1000
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Figure 2. MSE evolution with time-varying channel
(a) Nt = 200 (b) Nt = 1000

crete PAM sequence with an SNR of 30 dB, and equalizers
with N = 50 coe�cients are used. All subchannel coe�-
cient vectors are initially null, except for c(L=2) which has
a single unitary central tap. The forgetting factors used in
the RLS algorithm and in the unnormalized power estimate
are set to 0.99.
Figure 1 depicts the evolution of MSE (Mean-Square

Error) for oversampling factors L = 1; 2; 3; 4 and block
lengths Nt = 200; 1000, as well as the MSE of a symbol-
spaced Godard equalizer, averaged over 100 Monte Carlo
trials. To establish the steady-state accuracy of the super-
exponential curves, the MSE values obtained with the non-
recursive (batch) algorithm after 10 iterations using the full
data record of 5000 symbols are also shown. The required
Godard step size � = 10�3 was empirically selected to max-
imize the convergence speed while avoiding instability.
The Godard algorithm converges in about 1000 itera-

tions, whereas the convergence speed of the recursive super-
exponential algorithm depends on block size. Although con-
vergence is slower when larger blocks are used (measured
in symbol intervals), fewer iterations are required before
steady-state is reached since cumulants are more accurately
estimated.
Time-varying channel: According to a Ricean fading

model, independent, zero-mean Gaussian disturbances were
added to each path gain of the previously used multipath
channel. To simulate (relatively) slow channel variations,
these disturbances were kept �xed in blocks of 100 sym-
bol intervals, and updated with narrowband-�ltered white
noise. The power of each disturbance was 10 dB lower than
the squared magnitude of the corresponding nominal gain,
and the path delays were kept constant. The MSE evo-
lution of the recursive and nonrecursive super-exponential
algorithms, as well as that of the Godard equalizer, are
shown in �gure 2. The previous Godard adaptation step
� = 10�3 provided good tracking performance in the whole
data record. The batch algorithm performs modestly, since
a single coe�cient vector is used to equalize all the symbols.

Regarding the recursive algorithm, its tracking performance
is superior to that of the Godard equalizer when blocks of
Nt = 200 symbols are used. In �gure 2b the input statistics
vary signi�cantly within a data block, causing an increase in
output MSE because the coe�cient vector remains far from
steady-state for each of the individual channel responses.

5. CONCLUSION

A recursive implementation of the super-exponential algo-
rithm was proposed. Like the original nonrecursive algo-
rithm, it is based on cumulant estimates using blocks of
input and output samples. However, recursive propagation
of several variables between consecutive blocks allows fewer
samples to be used in each block. The RLS algorithm is
used in computing part of the super-exponential iteration,
and it provides a numerically robust tool that is important
when fractionally-spaced sampling leads to numerically ill-
conditioned input covariance matrices. The computational
requirements of the recursive algorithm are essentially those
of multichannel RLS.
The proposed approach replaces the di�cult and channel-

dependent selection of an adaptation step with the less crit-
ical choice of a block length. Since few blocks are required
before the recursive algorithm reaches equilibrium, its con-
vergence speed is greater than that of the fastest Godard
equalizer for moderately large data blocks. Moreover, the
transient behavior is robust in the sense that the number
of required iterations does not strongly depend on channel
characteristics due to the data whitening operation that is
an integral part of the super-exponential algorithm. Adap-
tive step-size selection has also been addressed in recent
normalized CMA algorithms, but the convergence speed
still shows signi�cant dependence on the channel charac-
teristics.
By changing the order of the cumulants in the super-

exponential cost function, non-CMA algorithms are ob-
tained. These may prove more adequate with certain kinds
of constellations or other deconvolution problems.
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