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ABSTRACT

In the absence of HMMs trained with speech collected in
the target environment, one may use HMMs trained with a
large amount of speech collected in another recording con-
dition (e.g., quiet office, with high quality microphone).
However, this may result in poor performance because of
the mismatch between the two acoustic conditions.

We propose a linear regression-based model adaptation
procedure to reduce such a mismatch. With some adap-
tation utterances collected for the target environment, the
procedure transforms the HMMs trained in a quiet condi-
tion to maximize the likelihood of observing the adapta-
tion utterances. The transformation must be designed to
maintain speaker-independence of the HMM.

Our speaker-independent test results show that with this
procedure about 1% digit error rate can be achieved for
hands-free recognition, using target environment speech
from only 20 speakers.

1. INTRODUCTION

Speech recognition for matched conditions (i.e., where
training and testing are performed in the same acoustic
conditions) has achieved low recognition errors, for in-
stance, 1% word error rate (WER) for connected digits
recorded over the telephone network [5]. However, such
results are based on the collection of large amounts of
training data under conditions as close as possible to the
testing data. In many speech recognition tasks (e.g., hands-
free recognition in a car), collection of a large database to
train speaker-independent HMMs is very expensive. Yet
if HMMs are used in cross-condition recognition, such as
using a close-talking microphone in a quiet office for train-
ing, and then testing on hands-free recognition in a car, the
mismatch will degrade recognition performance substan-
tially.

In terms of power spectral density, the mismatch can
be characterized by a linear filter and an additive noise:
jY (!)j = jH(!)j

2
� jX(!)j+ jN(!)j whereY (!) repre-

sents the speech to be recognized,H(!) the linear filter,
X(!) the training speech, andN(!) the noise. In the log
spectral domain, this equation can be written as:
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 can be used to characterize the mismatch, which de-
pends on the linear filter, the noise source and the signal
itself.

To overcome the mismatch, several types of solutions have
been reported. For example, cepstral mean normalization
(CMN) is known for its ability to remove the first term
in  (i.e., stationary bias) in cepstra [2]. –¿ For exam-
ple, cepstral mean normalization (CMN) removes station-
ary bias by removing the first term in . ¡– It has been
shown that using CMN, telephone quality speech models
can be trained with high quality speech [9]. However, this
is not effective for the second term, which is caused by
additive noise and cannot be assumed constant within the
utterance. Two-level CMN [4] alleviates this problem by
introducing a speech mean vector and a background mean
vector. Other, more detailed models of the mismatch in-
clude joint additive and convolutive bias compensation [1]
and channel and noise estimation [8].

In this paper, we assume that we are given two datasets:

� An initial set of HMMs trained on large amount of
speech recorded in one condition (e.g., in a quiet
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room using high quality microphone), which pro-
vides rich information on coarticulation and speaker
variability, and

� A smaller speech database collected in the target
environment, which provides information on the
test condition including channel, microphone, back-
ground noise and reverberation.

We are interested in training accurate speaker-independent
HMMs for use in the target environment.

We propose a model adaptation approach to obtain the tar-
get models. For this purpose, maximum likelihood linear
regression (MLLR) [6] is adopted, which models any dis-
tortion between the initial HMM and the target environ-
ment as a set of state-dependent linear transformations. It
has the potential of compensating for a combined effect
of channel and background noises. MLLR has been very
successful for speaker-dependent adaptation [6, 11]. How-
ever, reports on MLLR for speaker-independent HMM
transformation for noisy speech recognition have not been
found.

2. PROCEDURE

The procedure takes as input two sets of data: utterances
collected in one environment (R) for a few hundred speak-
ers, and utterances collected in the target application or
environment (T) for some much smaller number of speak-
ers. As output, the procedure gives a set of HMMs that
are adjusted and suitable for recognizing further speech
from the target application task. The new set of models
is speaker independent, and the adjustment is a one-time
operation for each application task.

We propose the following procedure:

1. train a set of HMMs H with data collected in environment R
2. repeat until the likelihood of data T stabilizes:

2.1. transcribe phonetically all utterances in T using H
2.2. group transcribed segments into a set of classes C
2.3.8c 2 C:

2.3.1. find transformation�c to maximize the likelihood
of utterances in T

2.3.2. transform HMMs using�c: H  �c(H)

The steps in 2. are explained as follows:
Step 2.1
Viterbi decoding is used to locate the starting and ending
time frame of each phone segment.

Step 2.2
The phone segments are grouped into phonetic classes
according to their acoustic similarity and the number of
frames within a segment. The greater the number of
frames, the larger the number of resulting phonetic classes.
Step 2.3.1
The transformation�c of the classc changes the mean
vector of the Gaussian distribution of HMMs according
to:

�j;k;h = �c�̂j;k;h (3)

where�j;k;h is the transformed mean vector for statej,
mixture componentk of the HMM h, and �̂j;k;h is the
original mean vector, which has the form:

�̂ = [!; �1; �2; : : : �n]
0 (4)

where! is the offset of the regression.

The observation probability density of Gaussians mixture
HMMs is in the form of:

b(ojj; k; h) =
exp(� 1
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Following [6], the transformation�c that maximizes the
likelihood is given by the following matrix equation:X
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where:

� Sc is the set of all segments grouped into classc,

� Ts is the utterance frames in the segments,

� �h is the states in the HMMh,

� �h;j is all mixture components of HMMh at state
j, and

� 
(s;t)
j;k;h is the probability of being in statej at timet

with mixture componentk, for the segments of the
modelh.

Equation 6 represents a linear system of�c and can be
solved by any appropriate technique.
Step 2.3.2
In this step, all HMMs of the classc are updated using the
new transformation.
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3. EXPERIMENTAL RESULTS

3.1. Speech databases

The procedure is evaluated for connected digit recognition.
Initial model training materials:
The environment R consists of the TI-DIGITS database
[7], down-sampled to 8 kHz. This database was recorded
over a high quality microphone in a very quiet room. The
training part includes 8614 utterances of from 1 to 7 digits
by 112 speakers.
Adaptation materials:
The environment T consists of utterances, also sampled
at 8 kHz, recorded inside a parked car over a hands-free
microphone mounted on the visor. Twenty speakers each
read 40 strings of 4, 7, or 10 digits.
Evaluation materials:
For the same 20 speakers, a separate recording session
yielded 800 strings of 4, 7, or 10 digits. The number of
digits in the utterance was kept unknown to the recognizer
during the evaluation.

The observation vectors consist of 10 DFT mel-frequency
cepstral coefficients (MFCC) along with their regression-
based first-order time derivative at a frame rate of 20ms.

3.2. HMM structure

We use gender-dependent digit-specific phone models.
There are about 78 HMMs per gender. Each state has self-
loop, jump to next state and skip transitions. The number
of states for a phone model is based on the average du-
ration of phone segments in the training data, with some
exceptions for practical considerations. Up to 8 Gaussian
distributions per state are used. The HMMs are trained
using an EM procedure.

3.3. Evaluation procedure and results

Since we want to know the performance of the speaker-
independent model transformation, and our evaluation data
set has only 20 speakers, a jack-knife procedure was used
in order to ensure speaker-independence of the tests:

1. Repeat until all speakers are tested:
1.1. select an untested speaker
1.2. transform HMMs using the utterances of the remaining

19 speakers
1.3. test the recognition performance on the selected speaker

2. Average the recognition results over speakers.

The recognizer was tested under four configurations:

� Direct use of HMM models trained in R for recog-
nition of utterances in T. Preliminary tests show that
this resulted in severe performance degradation due
to microphone mismatch and background noise.

� One unique bias (� = �̂ + B) for all phone mod-
els. The WER drops to 1.54%. Note that unique
bias should outperform CMN, since it makes use of
HMM structure [10].

� With one unique linear transformation (� = A�̂ +
B) for all phone models. The WER is reduced to
1.2%.

� With a numberN of linear transformations (Eq-3),
whereN is controlled in the experiments byM , the
minimum number of frames required to introduce a
transformation class. Figure 1 shows the word error
rate as a function ofM . We can see that forM =
500, the lowest WER of 1.02% is obtained.

To summarize, if we takeunique biasas the baseline,
thenunique linear transformationreduces the error rate
by about 20% and the best set ofN linear transformations
reduces the error rate by about 35%.

3.4. Discussion

Figure 1 shows that:

� The transformation is not optimal if the minimum
number of vectors per transformation is too large
(e.g.M = 1000). This confirms that the mismatch
caused by the combination of distortion factors is
state-dependent and therefore needs to be covered
by an adequately large number of state-dependent
transformations. Actually, ifM = 1 then the sys-
tem reduces to the case ofunique linear transfor-
mationas the WER curve indicates.

� Too many transformations result in poor perfor-
mance (asM ! 0), because in this case the trans-
formations will capture information specific to the
19 adaptation speakers in addition to the acoustic
conditions of the adaptation utterance.

Some test utterances contain unusually high background
noise. This means that the WER could be further reduced
if some noise resistant recognition feature, such as parallel
model combination [3], were included.
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4. CONCLUSION

We presented a procedure for obtaining accurate speaker-
independent HMMs for hands-free digit recognition using
initial HMMs trained on “high-quality” speech and using
some adaptation utterances collected in the target environ-
ment.

The procedure uses state-dependent linear transformations
which are adjusted to yield speaker-independent perfor-
mance.

Experimental results show that the procedure gives sub-
stantial WER reduction over simple cepstral mean nor-
malization. Our cross-environment recognition evalua-
tion achieves performance (1% WER) similar to that of
conventional environment-dependent, matched-condition
training for similar tasks, such as digit recognition over
the telephone network, yet only 20 speakers had to be col-
lected in the target environment.
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Figure 1: WER as function of minimum number of vec-
tors per transformation
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