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ABSTRACT

In this study we propose a new method to design Pseudo-QMF
prototype filters to implement Near Perfect Reconstruction (NPR)
cosine-modulated filter banks. The method is based on the eigen-
filter approach, that is simple to implement, but, nevertheless, is
very efficient in designing high attenuation prototype filters. The
method also allows to design complex coefficient prototypes that
can be used to build nonuniform filter banks. The effectiveness of
the method is demonstrated by means of some examples of design
of both uniform and nonuniform filter banks.

1. INTRODUCTION

The eigenfilter approach is an efficient method to design a large va-
riety of digital filters having both Finite Impulse Response (FIR)
[1]-[3] and Infinite Impulse Response (IIR) [4][5]. The method is
flexible and is easily implemented, since the problem is reduced
to finding the eigenvector corresponding to the minimum eigen-
value of a positive-definite matrix. Applications of the eigenfilter
approach to multirate signal processing are given in [6]. In [7] it
has been used to design two-channel QMF banks by finding the
minimum of a mixed time/frequency domain based cost function.

The purpose of this paper is extending the application of the
eigenfilter approach to design linear phase prototypes with real and
complex coefficients to implement uniform and nonuniform NPR
cosine-modulatedM -channel filter banks. A nonuniform analy-
sis/synthesis filter bank with integer decimation factors is shown
in Fig. 1. If all the downsampling/upsampling factors in each
branch are equal toM , we have a uniform filter bank.

In uniformM -channel cosine-modulated filter banks, the im-
pulse responses of the analysis and synthesis filters are given by

fk(n) = 2h(n) cos((2k + 1) �
2M
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wherek=0,1,: : :,M � 1, n=0,1,: : :,N � 1, and�k = (�1)k�=4.
The prototypeh(n) is assumed to have lengthN and to be sym-
metric. The prototype frequency response must satisfy, at least
approximately, the Power Complementary (PC) property , i.e.,
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For nonuniform filter banks, several prototypes can be used
[8]-[10]. In this case, a different sequencefh(n)g is used in each
branch of the bank, whereas the phase terms�k of adjacent branches
must be chosen so that they differ of�=2. In [8], prototypes with
different transition bandwidths are modulated to build the final
nonuniform bank. To fill the gaps between the frequency responses
of filters derived from different prototypes, the modulation of a
prototype having a nonsymmetric amplitude frequency response
and such to match the transition bands of the neighboring filters is
needed. This allows the cancellation, at least approximately, of the
main aliasingcomponents (Pseudo-QMF banks). Hence, a com-
plex coefficient filter satisfying the PC property must be designed.

The method proposed in this study can be applied to design
both real and complex coefficient PC prototypes (see Section 3). In
the next section, we will address the problem of eigenfilter design
of complex coefficient FIR filters having a linear phase.

2. LINEAR PHASE COMPLEX COEFFICIENT
EIGENFILTERS

Let h(n), n = 0; 1; : : : ; N � 1, be the frequency response of a
low-pass filter with, in general, complex coefficients. LetD(!)
be the desired frequency response and, as shown in Fig. 2, let
D1(!) andD2(!) denote the desired response at the negative
and positive frequencies, respectively. A subscripts, t or p will
be added to denote the desired frequency response in the stop-
band, transition band or passband. In the eigenfilter approach, a
weighted cost functionE is defined as a function of the error be-
tweenH(!), whereH(!) =

PN�1

n=0
h(n)e�j!n, and the desired

target function. The cost function is expressed as a quadratic form,
i.e.,E = yTPy, wherey is related to the filter coefficients andP
is a positive-definite matrix [1]. In [3]P is acomplex coefficient
N � N Hermitian matrix, whereas in [2]P is a real coefficient
2N � 2N symmetric matrix. In both cases, the eigenvalues of
P are real and the minimum of the quadratic form under the con-
straintkyk2 = constant is reached fory equal to the eigenvector
corresponding to the minimum eigenvalue ofP.

We will formulate the eigenfilter method by exploiting the
fact that the filters to be designed are linear phase, as they are
those used in [8]. This property simplifies the structure of the
matrixP that becomes areal coefficientN � N positive-definite
symmetric matrix. Suppose thath(n) = h�(N � 1 � n), i.e.,
hR(n) = hR(N�1�n) andhI(n) = �hI(N�1�n), where the
sequencesfhR(n)g andfhI (n)g are the real and imaginary part
of fh(n)g, respectively. The frequency responseH(!) satisfies
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2 , whereH(!) is a real valued function.

It can be easily verified that, for evenN , we have
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Similar expressions hold for oddN , but they are omitted here for
brevity’s sake. Also the desired frequency responseD(!) must

have linear phase, i.e.,D(!) = D(!)e�j!
N�1
2 , whereD(!) is a

real function asymmetrical around! = 0.
Consider now the positive frequency axis. In the stopband

(!s;2; �), we haveDs;2(!) = 0. A weighted cost function can
be defined as
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whereWs;2(!) (as well asWp;2(!) andWt;2(!) defined in (7)
and (8)) is a positive-valued weighting function.

In the passband(0; !p;2), the error is measured betweenH(!)
and its value in! = 0 [1], i.e.,H(0) = hLP

T
c0, where, for even

N , c0 = [1 1 : : : 1 0 0 : : : 0] is a vector withN=2 entries equal
to 1 andN=2 entries equal to0. The cost function in this region
can be expressed as
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In the transition band(!p;2; !s;2), we will assume thatD2(!) is
given. We consider the error betweenH(!) and a scaled version
of D2(!) [2]. Let Dt;2(!) = [D2(!)=D2(!t;2)]H(!t;2), where
!t;2 is a frequency belonging to the transition band. By using
H(!t;2) = hLP

T
ct;2, wherect;2 is c computed for! = !t;2,

we haveDt;2(!) = hLP
T [D2(!)=D2(!t;2)] ct;2. Therefore, the

cost function in the transition region is given by:
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New matricesPs;1, Pp;1 andPt;1 similar to those defined in
(6), (7) and (8) can be easily derived relatively to the negative fre-
quency axis. The global cost function can be written as

E = hLP
T (ks;1Ps;1 + kp;1Pp;1 + kt;1Pt;1 + ks;2Ps;2+

+kp;2Pp;2 + kt;2Pt;2)hLP = hLP
T
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The constants multiplying the matrices are chosen to weigh the
different contributions. The eigenvector ofP relative to the mini-
mum eigenvalue yields the optimum vectorhLP and, by using the
symmetries ofhR(n) andhI(n), the filter coefficientsh(n).

3. DESIGN OF PSEUDO-QMF EIGENFILTERS

In this section, we will apply the method previously described to
design real and complex coefficient prototypes that are approxi-
mately power complementary. Note that a characteristic of the
method described in Section 2 is that the desired frequency re-
sponse is assumed known on the whole interval(��; �), i.e., the
transition bands are not assumed as “don’t care bands”. Note also
that, by using the definitions given in the previous section, the
PC property (2) can be translated into a quadratic constraint that
must be satisfied by the prototype filter coefficients. Therefore, the
problem could be solved by using a quadratic-constrained least-
squares search, that is the formulation given in [11]. To maintain
the simplicity of the classical eigenfilter approach, we will assume
thatD1(!) andD2(!) are defined analytically, so that the pro-
cedure described in Section 2 can be used (the real and complex
coefficient prototype cases are considered separately).

1) Real coefficient prototype for uniformM -channel filter banks

Let !s;2 = �!s;1 = �
M

and!p;2 = !p;1 = 0. Let D1(!)
andD2(!) be defined as follows
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where the function�(x) satisfies

�(x) =

�
0 x � 0
1 x � 1

�(x) + �(1� x) = 1 0 < x < 1

(11)

Functions of this type have been used by Meyer to define the Fourier
Transform of orthonormal continuous wavelet functions (see, for
example, [12][13]). It can be easily verified thatD1(!) = D�

2(�!).
Even if the choice!p;2 = !p;1 = 0 seems to imply the absence
of a passband, the definitions of the transitions bands in (10) in-
clude also an interval in which the frequency reponse is flat around
! = 0. The higher the regularity of�(x) atx = 0, the wider the
interval in which the response can be considered a passband.

2) Complex coefficient prototypes

For nonuniform filter banks, as designed in [8], in the simplest
case, two prototypes are designed for anM1 andM2-channel uni-
form filter bank. Filters are selected from these banks to build
the final nonuniform bank. To join filters coming from different
banks, the modulation of a complex coefficient prototype having
a nonsymmetric amplitude frequency response, like that shown in
Fig. 2, is needed. In fact, its frequency response in the two tran-
sition bands must match those of theM1 andM2-channel proto-
types. Suppose (10) is used to design the prototypes for the uni-
form M = M1 andM = M2 channel banks. Without loss of
generality, assumeM2 < M1, so that a wider transition band-
width is allowed for theM2-channel prototype. The downsam-
pling factor associated to the complex coefficient prototype isM2.
Its frequency response in the transition band at positive and neg-
ative frequencies ideally should match those defined in (10). Let
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2M2
� �

2M1
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2M2
+ �

2M1
, !p;2 = 0 and
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whereN is the number of coefficients of the prototype.

The ideal PC prototypes defined by (10) and (12) would allow
to implement nonuniform filter banks such that the aliasing cancel-
lation requirement is perfectly satisfied. The eigenfilter approach
described in Section 2 allows to compute the filter coefficients that
approximate the ideal prototypes in a weighted least-squares sense.

The degree of regularity of�(x) at the pointsx = 0 andx = 1
induces the degree of regularity ofD(!). A compromise between
a smoothly behavedD(!) (high regularity of�(x)) and not ecces-
sively steep descent transition bands (low regularity of�(x)) must
be achieved. If in the interval(0; 1) �(x) is a polynomial function,
antisymmetrical around the point(1=2; 1=2), and having a certain
number of null derivatives atx = 0 andx = 1, then its coefficients
can be easily computed by solving a linear system. We have found
that, for the filter lengths used in our examples, an order equal to
nine, i.e.,�(x) = 126x5 � 420x6 + 540x7 � 315x8 + 70x9, is
often a good choice to limit the PC property approximation error
and to obtain high stopband attenuations.

The analysis filter frequency responses of a five-channel nonuni-
form filter bank are plotted (with a normalized gain equal to unity
in the passband) in Fig. 3. The filters have been selected from
8-channel and4-channel uniform banks, having lengthN1 = 128
andN2 = 64, respectively. They are joined by a128 coefficient
intermediate filter. The prototypes have been designed by using
either (10) or (12) (the order of�(x) is nine). All the constantsk�;�
in (9) have been taken equal to unity. The overall distortion in the
absence of aliasing is�0:004 dB, whereas the maximum of the
uncanceled aliasing components is�71:5 dB.

The choice of defining analytically the frequency response in
the transition bands may seem a too severe constraint and such
to prevent from good prototype design. However, the technique
described in this section, associated with a proper choice of the
weighting functions, allows to obtain high stopband attenuation
filters (greater than 110 dB) even when the number of coefficients
of the filter and the number of channels of the bank are relatively
high, e.g.,N = 512; 1024 andM = 32; 64. Recursively updated
weighting functions have often been associated to the eigenfilter
approach [1][2][3][5]. LetH(n)(!) be the frequency response at
then-thstep of an iterative procedure.H(n)(!) is obtained by ap-
plying the eigenfilter approach withW (n)

�;� (!) as weighting func-

tions.W (n)
�;� (!) are updated as follows until a stop criterion is met.

1) Real coefficient prototypes for uniformM -channel banks
Consider the following definitions:

e
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for �=M � ! � �. The first expression measures the devia-
tion from the PC property ofH(n)(!) in the transition band. The

second measures the deviation from zero in the stopband. The
weighting functions are updated according to

W
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whereenv(�) is the envelope function, computed as a linear inter-
polation of the maxima of its argument.

2) Complex coefficient prototypes
Assume that two prototypesh1(n) andh2(n) for uniformM1

andM2-channel banks have been designed by using the weighting
functions updating described in the previous item. The introduc-
tion of Wt;2(!), based on (15) and (13), letH1(!) andH2(!)
move from the nominal functions defined by (10). Therefore, the
frequency response of the complex coefficient prototype to be used
along withh1(n) andh2(n) should have, as target functions, the
transition bands ofH1(!) andH2(!) instead of those defined in
(12). The weighting functions, in the different bands, must be
based on the deviation from PC property, i.e.,

e
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2M2
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� ! < 0. The error in the stopbands at positive
and negative frequencies is measured as in (14). The weighting
function update is performed analogously as done in (15) and (16).

4. EXPERIMENTAL RESULTS

Several uniformM -channel banks have been designed. The weight-
ing functions updating was based on the discussion made in the
previous section. A ninth order polynomial�(x) was used in all
the examples. Table 1 reports some characteristics of the banks
designed withM = 4; 8; 16; 32; 64: Astop is the maximum stop-
band gain,Er is the maximum deviation from unity of the overall
distortion function in the absence of aliasing andEal is the maxi-
mum value of the uncanceled aliasing components.

As an example of nonuniform filter bank a twenty subbands
filter bank, as shown in Fig. 4, was designed. The involved down-
sampling factors are64; 32; 16; 8. The prototypes described in
Table 1 have been used as well as transition filters with length
1024; 512; 256. For this bank, we obtainedEr = 6:18E � 04
andEal = �98:0 dB. As can be seen, even if long filters and
large decimation factors are involved, the procedure yields a high
reconstruction performance.

5. CONCLUSIONS

In this study, we have proposed an extension of the eigenfilter ap-
proach to design approximately power complementary prototypes
having both real and complex coefficients. In spite of its simplic-
ity, when associated to suitable weighting functions, it allows to
design high attenuation prototypes that allow to implement uni-
form and nonuniform banks with good recontruction properties.



Table 1: Characteristics of uniform filter banks designed with the
eigenfilter procedure.

M N Astop (dB) Er Eal (dB)
4 64 �111:4 5:85E � 04 �106:2
8 128 �111:9 6:36E � 04 �106:4
16 256 �111:9 6:78E � 04 �107:6
32 512 �112:7 6:12E � 04 �107:2
64 1024 �111:0 5:66E � 04 �102:6
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Figure 1: UniformM -channel analysis/synthesis banks.
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Figure 2: Desired frequency responseD(!).
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Figure 3: Analysis filter frequency responses relative to a nonuni-
form 5-channel bank. The prototypes are designed by using the
eigenfilter method to approximate the ideal frequency responses
defined in either (10) or (12).
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Figure 4: Analysis filters frequency responses relative to a nonuni-
form 20-channel bank. The prototype are designed by using recur-
sively updated weighting functions.


