
A NEW APPROACH FOR BLOCK-FLOATING-POINT ARITHMETIC

Shiro Kobayashi and Gerhard P. Fettweis

Mobile Communications Systems
Dresden University of Technology

01062 Dresden, Germany
fshiro, fettweisg@ifn.et.tu-dresden.de

ABSTRACT

A new approach for implementing block-floating-point arithmetic
is proposed. This approach intends to preserve the least-significant-
bits (LSBs) to improve signal processing quality. The preservation
of LSBs is automatically and perfectly done by hardware. Sev-
eral simulation results of the proposed block-floating-point imple-
mentation have shown improved SNRs over conventional block-
floating-point implementation as expected. For the same number
of bits for each data representation in the memory, the SNRs better
than floating-point are also observed.

1. INTRODUCTION

Both the complexity and the amount of algorithms assigned to dig-
ital signal processors (DSP) are rapidly increasing. Also, in order
to adapt to this situation of increase in performance requirements,
a number of DSPs are starting to employ multiple arithmetic dat-
apath architectures. These multiple datapath architectures provide
programmers with promised high performance only if every dat-
apath is controlled properly. This fact makes the programming
itself more complicated and, subsequently, time consuming. On
the other hand, the development time of the program code is still a
major concern. The traditional approach of assembly coding does
not appear to be working any more. Hence, it can be expected that
more program code will be developed with high-level languages
such as C, C++, Ada, or Java.

The application of high-level languages has not been success-
ful in most commercial DSPs except for 32-bit floating-point DSPs.
However, if chip size and power consumption are major concerns,
it does not seem realistic to equip a single DSP chip with multiple
32-bits floating-point arithmetic components.

Hence, it is necessary to investigate the appropriate arithmetic
system which allows the effective application of high-level lan-
guages with acceptable chip cost. Short-word floating-point arith-
metic is, of course, one possibility. The fact that the arithmetic of
floating-point DSPs matches with the float type of the C language
makes the application of C compiler straightforward and thus rel-
atively easy. However, the signal processing quality of short-word
floating-point has not been studied well, and there are some ques-
tions about its arithmetic performance [1]. Block-floating-point
also seems to be a very attractive solution. In view of chip size,
a block-floating-point DSP can be as small as a fixed-point DSP
while allowing higher signal processing quality. However, again,

This work was supported in part by Asahi Chemical, Tokyo, Japan,
Siemens Semiconductor, Munich Germany, and the German Federal Min-
istry.

it does not seem to have been studied well towards its application
to commercial DSPs.

This paper is based on a novel idea of block-floating-point im-
plementation, named hierarchical block-floating-point [2]. In this
paper, some theoretical background of hierarchical block-floating-
point is newly added. Additional simulation results are also pre-
sented.

The outline of the following part of this paper is: In Section 2,
signal processing qualities of several different implementations of
block-floating-point are discussed. The idea of hierarchical block-
floating-point is also introduced. The discussion on the perfor-
mance of arithmetic systems has been confirmed by simulation.
The results are given in Section 3. Conclusions based on the dis-
cussion and simulations are summarized in Section 4.

2. BLOCK-FLOATING-POINT
ARITHMETIC BACKGROUND

The analysis of signal quality can be measured by the signal-to-
quantization noise ratio (SNR), where each step of rounding re-
duces the SNR accordingly. Take an example of the multiply-
accumulate operation with each product rounded shown in Fig-
ure 1. This operation includes three quantizers: an input signal
quantizer, a product quantizer, and an output quantizer with SNRs
of SNRinp, SNRprd, andSNRout respectively. The accumula-
tion operation, i.e., addition, does not need to be considered, be-
cause it does not require quantization.

The SNR of a (B+1)-bit quantizer is given in [7] as

SNR = 6:02B + 10:79 � 20 log
10
(

1

Arms

) (1)

where the quantityArms is the rms value of the signal amplitude
written as the ratio to the full-scale value of the quantizer.

Block-floating-point ideally outperforms fixed-point, since its
input signals are always block normalized, and thus always the
same large rms input signal amplitude can be expected for a ran-
dom signal sequence. However in reality, depending on how a
block-floating-point arithmetic is implemented, each partial SNRs
shown in Figure 1 degrades substantially by losing information in
least-significant-bits (LSBs) through rounding. In the following
two sub-sections, the effect of losing LSBs is discussed.

2.1. Losing LSBs caused by avoiding accumulator overflow

How to deal with possible overflow during accumulation in
multiply-accumulate operation is an important issue of fixed-point



(b)(a)

in memory

product

accumulator

SNRinp,S
>> >>

>>SNRprd,G SNRprd,S

SNRinp,G

SNRout,G SNRout,S

out memory
sign bit

mantissa bit

redundant
sign bit

rounded
product

>> down-scaling

rounding

SNRall

SNRacc

Figure 1: Noise model of multiply-accumulate operation with
product rounding: a) Guard-Bits and b) Input down-scaling.

arithmetic. Since block-floating-point realization exploits a fixed-
point computational datapath, this accumulator overflow problem
needs to be considered. The risk of overflowing the accumulator is
reduced by introducing some extra bits of higher significance than
the most-significant-bit (MSB) of the multiplier output. These ex-
tra bits are designatedguarding-portionin the following part of
this paper. Such guarding-portion is usually realized by either ex-
plicitly introducing extra bits into the accumulator, called guard-
bits, or scaling down the input of the multiplier, which accord-
ingly moves the MSB of the multiplier output to a less significant
location. Previous research of block-floating-point systems seem
to have implied scaling-down the multiplier input [3],[4],[5],[6],
while most of commercially available DSPs employ guard-bits.

45

50

55

60

65

70

75

80

85

90

16 18 20 22 24 26 28 30

Si
gn

al
-t

o-
N

oi
se

 R
at

io
 [

dB
]

Width of Accumulator [Bits]

a-1) Guard-Bits: 4 bits
a-2) Guard-Bits: 8 bits
b-1) Scale-down: 0 bit
b-2) Scale-down: 1 bit

b-3) Scale-down: 2 bits

Figure 2: Theoretical SNRs of multiply-accumulate operation
(SNRacc in Figure 1: a) Guard-Bits and b) Input down-scaling.
The multiplier input width,B in equation (1), is 15 bits.

The SNR of the result in the accumulator after multiply-
accumulate operation with each product rounded shown in Fig-
ure 1 is given as

SNRacc = SNRinp � 20 log
10
(2 + 10

SNRinp�SNRprd

20 ): (2)

Figure 2 plots some example SNR curves from equation (2) for
a fixed width of multiplier input and various accumulator widths.

EachSNRinp andSNRprd in the equation (2) is calculated with
the equation (1). When the multiplier input is scaled down, the
width of the accumulator in the practical range of interest does not
affect the overall SNR,SNRacc. However, theSNRacc varies
based on the width of the guarding-portion, i.e., the amount of the
scaling, to be implemented.

On the other hand, it is obvious that in case of the guard-bits
approach, the effect of product rounding is negligible if the effec-
tive accumulator width is as many as 2 bits wider than the width
of multiplier input. The effective accumulator width here is de-
fined as the accumulator width excluding guard-bits. Thus, for the
16 bits multiplier input and 8 bits for guard-bits, which is a very
common configuration in many commercial DSPs, an accumula-
tor with total of 26 bits width is enough to keep the precision of
the original multiplier input. Note that this is true only for block-
floating-point oriented DSP where input signals are always block
normalized. The width of the accumulator is in practical fixed
in a DSP. Hence, the guard-bits approach accordingly promises
a fixed SNR for all algorithms (except recursive algorithms) and
wide range of input signal levels.

2.2. Preserving LSBs of computation result

The necessary width of the guarding-portion, defined in the pre-
vious sub-section, is determined through the analysis of the al-
gorithm being implemented. This analysis is done by referring
to filter coefficients or the number of accumulation, for example.
However, such a simple analysis usually only gives the worst case
estimation resulting in a too wide guarding-portion. Some precise
analysis is also possible, though the precise analysis has to be spe-
cially designed for each algorithm. The analysis itself is also pain-
taking for achieving such preciseness. Hence, even when consid-
ering the higher likelihood of fully utilizing all guarding-portion
of block-floating-point over fixed-point due to its normalized in-
put, the probability of having unnecessary guarding-portion is not
zero.

Let’s think about how to store the computational results with
some unnecessary bits in the guarding-portion. These unneces-
sary bits appear as redundant sign bits. In a block-floating-point
system, each computational result in the accumulator is checked
during its store operation to the memory in order to find how many
redundant sign bits each result contains. However, it is not possible
to remove these redundant sign bits from each computational re-
sult. The reason is that in a block-floating-point system, all data in
a block have to be scaled by the same amount, called block-scale-
factor, and hence all of the computational results in a block have to
be checked before scaling any of them. Removing the redundant
sign bits is done at the input of the next computation.

The computational results in the accumulator are thus stored
into the memory with some redundant sign bits, while discarding
corresponding amounts of LSBs. This is a very common imple-
mentation of block-floating-point on currently available commer-
cial DSPs. The lack of LSBs causes some SNR degradation at the
output of current computation. It also leads to similar SNR degra-
dation to that caused by the down-scaling of the multiplier input
during the next computation. Figure 3-a illustrates this implemen-
tation.

In order to avoid such performance degradation caused by dis-
carding LSBs, another implementation is also widely used (Fig-
ure 3-b). With this implementation, each computational result in
the accumulator is stored into the memory as double word, keeping



Output from computation Stored in memory

normalize re-align

a)

b)

c)

normalize

0normalize

exp1
exp2
exp3

redundant sign bit
sign bit
mantissa bit

0
0

Width of data
element in memory

Input to the
next computation

Figure 3: Different Block-Floating-Point Implementations: a)
Conventional single-word, b) Conventional double-word, and c)
Hierarchical.

the accumulator’s double-word precision. The possibility of losing
LSBs is drastically reduced. On the other hand, the required num-
ber of operation per data is at least doubled.

A novel implementation of block-floating-point, named hier-
archical block-floating-point, also preserves the LSBs with much
less memory requirement. Figure 3-c illustrates the idea briefly.
Each computational result is independently normalized, and only
the most significant single-word is stored into memory. A corre-
sponding scale information is also assumed to be available. When
these results are used for the next computation, each result is shifted
to the right, or scaled down, by the difference of each scale factor
from the block-scale-factor. At this point, all data in a block are
aligned to the binary point of the largest value in the block. Not a
single LSB is discarded. The representation of intermediate data
in the memory is in fact the same as floating-point. However, the
location of the binary point of each input data is aligned again be-
fore the next computation begins, and every computation is done
with an inexpensive fixed-point datapath.

2.3. Hierarchical Block-Floating-Point on
Multiple Datapath DSP

The advantage of hierarchical block-floating-point is limited if it
is applied to a single datapath DSP. Even though the cost for the
arithmetic datapath is low, the extra cost for keeping each scale
factor in the memory is still expensive compared to a fixed-point
implementation.

data-element

b)

data block
data group

a) Single datapath DSP
b) Multiple datapaths DSP

data-element

a)

data block data-element
data-group

data-block
group-scale-factor

block-scale-factor
= minimum group-scale-factor

Figure 4: Data-group block-floating-point.

On a multiple datapath DSP, data elements fed into or received
from the arithmetic datapath in parallel are likely to be treated as a
groupof several data elements. All data elements in a data-group
are accessed together.

By introducing a data-group scheme and also a new joint scale
factor for each data-group, i.e., group-scale-factor (See Figure 4),

the memory cost for each scale-factor becomes smaller per data
elements along with increased parallelism. In future DSPs with
possibly at least 8 to 16 parallel computational datapaths, this cost
becomes negligible. A hierarchical block-floating-point realized
on such a data-group based DSP, named data-group block-floating-
point, becomes cost effective even for the memory.

3. SIMULATION RESULTS

The signal processing quality of three different block-floating-point
implementations and a short-word floating-point implementation
have been checked by means of simulations.

The signal processing quality is measured by SNR defined as

SNR = 10 log

P

n

reference(n)2

P

n

(reference(n)� target(n))2

where reference(n) is a 64 bits double precision floating-point out-
put signal sequence, and target(n) is an output computed with the
target data representation. Input sequences are assumed to be Gaus-
sian distributed.

The block-floating-point implementations are summarized in
Table 1 following the discussion in Section 2. The discussion in
Section 2 suggests that guard-bits outperform input down-scaling
due to its fixed high SNR, and the normalization of computation
resultsbeforestoring may give higher SNR. The first example of
block-floating-point employs guard-bits without the computation
result normalization. This is one of the most conventional imple-
mentations which can be found on commercial DSPs with guard-
bits. With this implementation, the analysis of application and in-
put data properties determines the part of the accumulator to be
stored into the memory. If the analysis is inaccurate, the stored re-
sult may contain redundant sign-bits (denormalized number). This
implementation is shown as Guard-Denormalized Block-floating-
point (GD-BFP) in Table 1. Scale-Denormalized Block-floating-
point (SD-BFP) is also conventional, which employs input down-
scaling instead of guard-bits. The amount of scaling is also deter-
mined through the analysis. The Guard-Normalized Block-
floating-point (GN-BFP) in Table 1 exploits both ideas. This gives
an example of the hierarchical block-floating-point implementa-
tion.

Preserving LSBs of result
Yes No

Guard-Bits H-BFP(GN-BFP) GD-BFP
Input Down-Scaling SD-BFP

Table 1: Block-Floating-Point Implementations.

Figure 5 plots the SNRs of two 11-tap FIR filters whose coef-
ficients require no guard-bits (above figure) and three bits (bottom
figure) respectively for avoiding accumulator overflow. In Fig-
ure 5,Wmem is for the width of each data element in the memory,
wg for the width of the guard-bits when a guard-bit approach is
taken,sa for the amount of input down-scaling, andwe for the
width of exponent of floating-point, respectively. The widths of
the mantissa in the accumulator are thus defined asWacc�wg for
the block-floating-point with guard-bit,Wacc � (2sa� 1) for the
block-floating-point with input down-scaling, andWacc�we+1



for floating-point, respectively, whereWacc is the width of the ac-
cumulator. For all implementations except SW-FP, theWmem is
fixed to 16 bits, i.e., the double-word block-floating-point shown
in Figure 3 is not included.

The SW-FP shown as d) provides almost the same perfor-
mance for two different sets of coefficients. This fact suggests
that the short-word floating-point can achieve some fixed SNR in-
dependently from the input signal level or coefficients. The re-
sults of two short-word floating-point with wider mantissa, SW-FP
15+4 bits and 13+4, are presented only to show the effect of man-
tissa length to the SNR. With these two data representations, the
Wmem are 19 bits and 17 bits, respectively.

45

50

55

60

65

70

75

80

85

90

95

18 20 22 24 26 28 30

Si
gn

al
-t

o-
N

oi
se

 R
at

io
 [

dB
]

Width of Accumulator [Bits]

a) H-BFP

b) GD-BFP

c) SD-BFP
d) SW-FP

No guarding-portion required

a-1) Wmem=16, wg=4
a-2) Wmem=16, wg=8
b-1) Wmem=16, wg=4
b-2) Wmem=16, wg=8
c-1) Wmem=16, sa=0

d-1) Wmem=19, we=4
d-2) Wmem=17, we=4
d-3) Wmem=16, we=4

45

50

55

60

65

70

75

80

85

90

95

18 20 22 24 26 28 30

Si
gn

al
-t

o-
N

oi
se

 R
at

io
 [

dB
]

Width of Accumulator [Bits]

a) H-BFP

b) GD-BFP

c) SD-BFP
d) SW-FP

Three bits wide guarding-portion required

a-1) Wmem=16, wg=4
a-2) Wmem=16, wg=8
b-1) Wmem=16, wg=4
b-2) Wmem=16, wg=8
c-1) Wmem=16, sa=2

d-1) Wmem=19, we=4
d-2) Wmem=17, we=4
d-3) Wmem=16, we=4

Figure 5: SNRs of two FIR-filters with no requirement for the
guarding-portion (above) and three-bits wide guarding-portion
required (bottom), respectively: a) Hierarchical Block-floating-
point, b) Conventional Guard-Block-floating-point, c) Conven-
tional Scale-Block-floating-point, and d) Short-Word Floating-
point.

The coefficients and the signal level of input impacts on the
SNR of block-floating-point system. The SNR of block-floating-
point with guard-bits theoretically becomes better when the coef-
ficients or input signals require more bits for avoiding accumula-
tor overflow, because then each multiplication result utilizes the
higher portion of the accumulator more efficiently, which results
in a better SNR. The H-BFP simulation results of the two filters
follow this expectation.

The above simple analysis is not enough to explain the ob-

servation of the GD-BFP results, which shows worse SNR for the
filter with more guard-bits requirement. This is due to the specific
of the simulation parameters where only one of the ten input signal
sequences used actually required 3 bits of guard-bits and the others
just 2 bits. The SNR performance degradation in the filter with po-
tentially better performance is thus introduced by losing the LSBs
when storing computation results into the memory.

Input down-scaling, on the other hand, leads to worse SNRs
along with increase of the shift amount for avoiding accumulator
overflow. This can be seen between two SD-BFP results. The filter
which requires no guard-bits, thus no input down-scaling, gives
better SNR than the other filter which requires 2 bits down-scaling
for avoiding accumulator overflow.

4. CONCLUSION

This paper shows that the SNR performance of block-floating-
point implementation can be improved through the preservation
of LSBs. Such preservation is done at both the input and output of
computation. At the input, employing the accumulator guard-bits
saves more LSBs than down-scaling the input. A novel approach
for preserving LSBs at the output, called hierarchical block-floating-
point, is presented. This approach employs an automatic normal-
ization and re-alignment of data. The block-floating-point which
combines both LSB preservation approaches provides a fixed and
best SNR over several different block-floating-point implementa-
tions for a fixed algorithm, regardless its signal levels and the co-
efficients. This fixed SNR is even higher than that of short-word
floating-point for the same amount of bits for data representation.

The presented novel block-floating-point implementation has
two good characteristics towards the application of a compiler.
First, the proposed hierarchical block-floating-point always pro-
vides a fixed and best SNR performance. Second, the signal pro-
cessing performance is always provided automatically by the hard-
ware.

5. REFERENCES

[1] Phil Lapsley et al.DSP Processor Fundamentals: Architec-
tures and Features. IEEE Press, 1997.

[2] Shiro Kobayashi and Gerhard Fettweis. A block-floating-point
system for multiple datapath DSP. InProc. 1998 IEEE Work-
shop on Signal Processing Systems (SiPS’98), Boston, USA,
October 1998.

[3] K. Kallioj ärvi and J. Astola. Roundoff errors in block-floating-
point systems. IEEE Trans. Signal Processing, 44(4):783–
790, April 1996.

[4] S. Sridharan. Implementation of state-space digital filter struc-
tures using block floating-point arithmetic. InProc. ICASSP-
87, pages 908–911, 1987.

[5] D. Williamson, S. Sridharan, and P. G. McCrea. A new ap-
proach for block floating-point arithmetic in recursive filters.
IEEE Trans. Circuits and Systems, CAS-32(7):719–722, July
1985.

[6] R. Frisch, B. Isenstein, and S. Stein. Arithmetic methods
trade off precision for numerical range.Electronic Product,
27(21):75–78,80, April 1985.

[7] A. V. Oppenheim and R. W. Schafer.Discrete-Time Signal
Processing. Engelwood Cliffs, NJ: Prentice-Hall, 1989.


