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Abstract

A simple yet e�ective statistic is proposed for de-
tecting transient buried in partially unknown ambient
noise. The transient model is the frequency scattered
increased variance observations. We pose the tran-
sient detection problem as homogeneity test and the
statistic is derived as the (generalized) likelihood ra-
tio test of overdispersion when the underlying obser-
vation sequence follows a double exponential distribu-
tion. Numerical testing focuses on the comparison of
this scheme with the CFAR power-law detector.

1. INTRODUCTION

A recently proposed power-law detector [1] has attracted
much attention in addressing transient detection espe-
cially for passive underwater acoustic application. The
problem setting is to assume that the frequency do-
main observation sequence follows a unity-exponential
distribution under the noise only hypothesis, while if
a transient is present, some observations have an in-
creased mean value. Posed as a standard hypothesis
testing problem, we have

H : f(x) =

n�1Y
i=0

1

�0
e�xi=�0

K : f(x) =
Y
i=2S

1

�0
e�xi=�0

Y
i2S

1

�1
e�xi=�1 (1)

in which S denotes that subset of f0; 1; : : : ; n � 1g
which correspond to \signal-containing" observations
and �1 = �0(1 + snr=M) where snr is the aggregate
SNR of the transient signal. Such a model arises natu-
rally when we take the magnitude-square FFT on time
sequences which assume a normal distribution. Assum-
ing appropriate normalization, the unity-exponential
bins correspond to those signal absent frequency band
while those with increased scale, which correspond to
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those observations with increased variance, suggest the
presence of transient signal.

Nuttall's power-law statistic is de�ned as

Tpl(x) =

n�1X
i=0

x�i (2)

in which xi denotes the magnitude-square of the ith

FFT bin, and � is an adjustable exponent. Assuming
the cardinality of S in (1) is M and further that the
M signal containing bins are equally likely distributed
among the total FFT bins, Nuttall derived his power-
law statistic as an approximation to the optimal like-
lihood ratio test which is otherwise computationally
infeasible. A remarkable feature is that the perfor-
mance of power-law detector does not depend on M
very much. In fact, it is found through extensive nu-
merical work that for a wide range of M , power-law
detector with 2 < � < 3 has near-optimal performance
and is hard to improve upon. However, its reliance on
the known �0 is too demanding in many applications.
As a remedy, Nuttall in [2] has proposed a constant
false-alarm rate (CFAR) version of (2):

Tcpl(x) =

�Pn�1
i=0 x�i

�
�Pn�1

i=0 xi

�� (3)

Our task here is to develop a new statistic that
is competitive with, or even better than, the CFAR
power-law. The approach we take is totally di�erent
from that of Nuttal. The model in (1) suggests that
under H all data follow an i.i.d. exponential distribu-
tion, while under K part of the observations follow a
di�erent exponential distribution. Therefore we could
consider the transient detection problem as test of ho-
mogeneity: whether or not the whole data set comes
from a single exponential distribution. This formula-
tion of the problem is in fact more consistent with the
practical situation we are likely to encounter. The tran-
sient signal, if present, does not necessarily have equal
strength among all the frequency bins it occupies (con-
sider, for example, the case that more than one tran-
sient appears at the same time).



The statistic for homogeneity testing is derived us-
ing the concept of the double exponential family, also
called the overdispersed model. A special property
about the exponential distribution is that its mean
and variance are functionally related to each other.
In fact, this is true for a whole class of distributions
called \one-parameter exponential families". Other ex-
amples include Poisson and Binomial. From a statis-
tical standpoint, this functional relationship between
mean and variance incurs some restriction in data mod-
eling; when the data set exhibits some heterogeneity, a
one-parameter exponentially family does not provide
enough 
exibility. A common remedy is to use mixture
models; but in this case the implementation is usually
restricted to numerical approaches, such as the EM al-
gorithm [3, 4].

Recognizing such a lack of 
exibility in addressing
heterogeneity, there has been considerable development
of the so-called double exponential families (DEF). DEF
generalize the one-parameter exponential family by in-
troducing a second parameter that controls its variance
independent of its mean { the overdispersion parame-
ter, which leads to another name, the so-called overdis-
persed model, i.e., it is the overdispersed version of the
corresponding one-parameter exponential family. An
advantage of using DEF over the mixture model is that
it remains a member of the exponential family for which
the inference tools are both rich and mature.

The original motivation for double exponential fam-
ilies was to use them as constituent distributions in gen-
eralized linear regressions for increased modeling 
exi-
bility. Its application to transient detection is exploited
in this paper. The idea, as implied above, is to con-
sider the signal-absent observations as the \no overdis-
persion" case since they all come from the same expo-
nential distribution; while for the signal-present obser-
vations, a mixture of two or more exponential distri-
butions causes nonhomogeneity in the data set, which
corresponds to the overdispersed case. Thus we have
transformed the transient detection problem to one of
testing the overdispersion (or from the opposite point
of view, testing the homogeneity) of the data set.

2. THE DERIVED TEST STATISTIC

2.1. Overdispersed Model

Supposing the original one-parameter exponential fam-
ily is of the form f�(x), then its double exponential
correspondent has the form [5]

~f�;�(x) = c(�; �)�1=2ff�(x)g�ffx(x)g1�� (4)

where � is the so-called overdispersion parameter. The
notation fx(x) refers to the density function with �

replaced by x. The normalizing constant c(�; �) is in-
troduced to make the integration equal unity so that ~f
is a legitimate density function. Setting � = 1 reduces
the DEF to its one-parameter exponential counterpart;
while � < 1 corresponds to the \overdispersed" case.
It is shown in Efron's paper the variance of the DEF
equals �2=� where �2 is the variance of the original one-
parameter exponential family, meaning the observation
exhibits heterogeneity (larger variance) when � < 1.

A nice property about this double-exponential fam-
ily is that the normalizing constant is close to unity. For
example, when the original one-parameter exponential
family is the exp(�), it was shown using the Edgeworth
expansion that c(�; �) can be approximated by

c(�; �) = 1� 1

12

1� �

�

Thus for non-extreme value of �, e.g., � > 1=2, c(�; �)
can be reasonably approximated by unity. This allows
us to drop out this normalizing term when doing in-
ference; otherwise, the lack of explicit form of c(�; �)
would exacerbate the di�culty in the likelihood based
inference.

An equivalent yet more useful form of (4) using Ho-
e�ding's representation [5] is

~f�;�(x) = c(�; �)�1=2fx(x) exp[��I(x; �)] (5)

where I(y; �) is the usual Kullback-Leibler distance
with parameters y and � respectively, i.e.,

I(�1; �2) = E�1flog[f�1(x)=f�2 (x)]g (6)

From (4) and (5), dropping the normalizing constant, it
is straightforward to derive the MLEs from n observa-
tions x1; � � � ; xn, all assumed to follow the distribution
(4), as

�̂ = �x (7)

�̂ =
n

2
Pn

i=1 I(xi; �x)
(8)

2.2. The New Statsitic

As mentioned earlier, we are interested in the test of
whether the observations come from a single exponen-
tial distribution exp(�) where � is the unknown ambi-
ent noise level; or whether they come from the overdis-
persed model ~f�;�(x) with � < 1. Equivalently, using
the fact that exp(�) is a special case of the overdis-
persed model with � = 1, our goal is to test, given
xi � ~f�;�(xi), the following hypothesis regarding �

H : � = 1
K : � < 1

(9)

The GLRT for this test utilizes the MLE for � as ob-
tained in (8). Thus the decision rule is



�̂ <
>

K

H

� (10)

where � is a constant smaller than one which satis�es
PH(�̂ � �) � � with � the pre�xed false alarm rate. To
obtain an explicit test structure with the DFT-square
samples, we need to evaluate the Kullback-Leibler num-
ber for the exponential distribution. We get

I(�1; �2) = log
�2
�1

� 1 +
�1
�2

Substituting �1 = xi and �2 = �x and inserting to (8),
we obtain, after some cleaning-up,

�̂ =
n

2
Pn

i=1 log[�x=xi]
(11)

The test (10) is thus equivalent to a threshold compar-
ison of the statistic

Tmvd=
1

n

nX
i=1

I(yi; �̂) =
1

n

nX
i=1

log[�x=xi] <
>

K

H

h (12)

That this be the generalized likelihood ratio test is in
fact a direct result of the following observation: we rec-
ognize (5) as an exponential family (hence have mono-
tone likelihood ratio) for � with natural statistic I(x; �),
assuming � is known. Thus the most powerful test
amounts to the threshold testing of

nX
i=1

I(xi; �) =
X

log
�

xi
� n+

Pn
i=1 xi
�

Substituting � by �x results in the generalized likelihood
ratio test of H vs K which is identical to that of (12).

Throughout this paper, we refer to the test statistic
as one of \mean-value deviance"(MVD). It quanti�es
in a certain way the average deviation of observations
from its mean value. Unusually large value of Tmvd(x)
implies such deviation is too great to be explained using
a simple exponential distribution model.

2.3. Properties of the New Statistic

Property 1 Tmvd(x) is nonnegative.

Proof: � Tmvd(x) =
1

n

n�1X
i=0

log
xi
�x
� 1

n

n�1X
i=0

(
xi
�x
� 1) = 0

Property 2 It is CFAR with respect to �0 in (1).
Proof: Recoganizing that � is a scale parameter for
f(xi), thus xi=�x, hence Tmvd(x), is an ancillary statis-
tic, meaning its distribution is free of � [6].

Property 3 It is sensitive to small outliers, that is,
observations with extremely small values.

This is so as the contribution to the test statistic
from each single observation xi is log(�x=xi). This dif-
fers from the CFAR power-law statistic that is more
sensitive to large outliers.

3. COMPARISON WITH CFAR

POWER-LAW DETECTOR

In this section we give examples to illustrate the advan-
tages and disadvantages of the MVD statistic. Speci�-
cally, our statistic is compared with the CFAR power-
law detector with di�erent �'s. The aggregate SNR =
50 and the FFT bin number is 128.

� CFAR power-law detector.

The results are plotted in �gure 1. Clearly for
M = 5, CFAR power-law detectors with � = 2; 3
are superior to the new detector; while for M =
40 andM = 100, the new detector exhibits signif-
icant performance gain over the CFAR power-law
detector. This is consistent with the property 3
of the MVD statistic. For small M , the power-
law detector with reasonably large � can easily
pick up these large outliers On the other hand,
with M large, most observations tend to have a
large value and the new detector is more respon-
sive to the small fraction (corresponding to noise
only bins) of observations which have relatively
smaller value.

� CFAR power-law detector with non-Gaussian noise.

In �gure 2 we repeat the above experiments for
non-Gaussian noise. Correspondingly the magnitude-
square DFT outputs no longer have an exponen-
tial distribution; in fact we assume they are ac-
tually squares of ones that follow an exponential
distribution. That is

f�(xi) =
1

2�
p
xi
e�
p
xi=� (13)

meaning that the underlying bin-level random vari-
ables are \heavy-tailed". It is apparent that the
new detector based on Tmvd is signi�cantly more
robust to such observations than is the power-law
statistic. The reason that the Tmvd is more ro-
bust to heavy-tailed ambient is again a direct re-
sult of the property 3, that is, it is not as sensitive
to large value outliers as the (CFAR) power-law
statistic.

4. CONCLUSION

In this paper we propose a statistic for testing homo-
geneity of a data set which assumes exponential dis-
tribution under the null hypothesis. We derive this as
the generalized likelihood ratio test of the \overdisper-
sion" in a double exponentially distributed data set.
Some properties of this statistic relevant to the tran-
sient detection task are summarized. Its performance
evaluation is done numerically and is compared to that
of the power-law detector.
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Figure 1: ROC curves of Tmvd and Tcpl with aggregate
SNR=50. The number of signal containing bins isM =
5; 40; 100 respectively for plots (a), (b) and (c).
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Figure 2: The same as in �gure 1 except it is for the
heavy-tailed model of (13).


