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ABSTRACT

This paper presents a new paradigm for signal reconstruction and
superresolution, Correlation Kernel Analysis (CKA), that is based
on the selection of a sparse set of bases from a large dictionary of
class-specific basis functions. The basis functions that we use are
the correlation functions of the class of signals we are analyzing.
To choose the appropriate features from this large dictionary, we
use Support Vector Machine (SVM) regression and compare this
to traditional Principal Component Analysis (PCA) for the task of
signal reconstruction. The testbed we use in this paper is a set of
images of pedestrians. Based on the results presented here, we con-
clude that, when used with a sparse representation technique, the
correlation function is an effective kernel for image reconstruction.

1. INTRODUCTION

This paper presents Correlation Kernel Analysis (CKA), a new
paradigm for signal reconstruction and compression that is based
on the selection of a sparse set of bases from a large dictionary of
class-specificbasisfunctions. The concept of sparsity enforcesthe
requirement that, given a certain reconstruction error, we should
choose the smallest subset of basis functions that yields a recon-
struction with this error. The problem of signal reconstruction is
formulated as one where we are given only a small, possibly un-
evenly sampled, subset of points in a signal where the goal is to
accurately reconstruct the entire signal.

The signal approximation problem we present assumes that we
have prior information about the class of signals we are recon-
structing or compressing in the form of the correlation function of
the class of signals to which this signal belongs, as defined by a
representative set of signalsfrom thisclass[9] [10]. For this paper,
the signalsthat we will be looking at are images of pedestrians[6]
[4] [8]. Using an initial set of pedestrian images, we compute the
correlation function and use the pointwise-defined functions as the
dictionary of basis functions from which we can reconstruct sub-
seguent out-of-sample images of pedestrians. Our choice of using
the correlation kernel can be motivated from a Bayesian point of
view.

To approximateor reconstruct animage, rather than usingtheentire
set of correlation-based basis functions comprising the dictionary
we choose a small subset of the kernels viathe criteria of sparsity.
We obtain a sparse representation by approximating the signal
using the Support Vector Machine (SVM) [1] [11] formulation of
the regression problem.

The results presented in this paper can be useful in low-bandwidth
videoconferencing, image de-noising, reconstruction in the pres-
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ence of occlusions, signal approximation from sparse data, aswell
as in superresolving images. This technique is an aternative to
traditional means of function approximation and signal reconstruc-
tion, such as Principal Components Analysis (PCA), for a wider
class of signalsthan just images.

2. GENERALIZED CORRELATION KERNELS

To reconstruct or compressafunction f, we useinformation about
the class of pointwise mean-normalized signalsthat f isa part of,
derived from a set of representative examplesfrom that class. This
information isin the form of the correlation function of the signals
in the class:

R(x,y) = E[(fa(x) = p(x))(faly) —(y))] (D)
where f,, areinstancesof the classof functionsto which f belongs,
x andy are coordinatesin the 2-dimensional signal, and ¢ arethe
point means acrossthe class of functions: p(x) = E[fa(x)].

We can also generate the eigen-decomposition of the symmetric,
positive definite correlation matrix by solving

/ XR(X,Y)én(X) = Anén(y) 2)

where ¢,, are the eigenvectors and A,, are the eigenvalues of the
system. After generating this decomposition, we can write R in
the form,

R(X,¥) =Y Anén(X)én(y) (3)

where M < co.

Theset of functions ¢,, are ordered with decreasing positive eigen-
value A,, and are normalized to form an orthonormal basis for the
correlation function of f,.

The correlation function R, which is positive definite, induces
a Reproducing Kernel Hilbert Space (RKHS) that allows us to
approximate the function f as[10]:

N
Fx) =) eR(x, %) (4)
=1
where i ranges over pixel locations in the image; R is the repro-
ducing kernel in this spaceand the normis:
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Figure 1: Examples of the correlation kernels we can compute.
Each column shows the kernels, Rq((z1 = a,z2 = b),y), for a
specific (a, b) whered = 0.0, d = 0.5, and d = 1.0 in the top,
middle, and bottom rows, respectively. Theseimages demonstrate
that d = 1.0 correspondsto avery smooth kernel, while d = 0.0
ishighly localized.

We can obtain awider class of kernels spanning exactly the same
spaceof functionsasthe correlation functionin Equation 3 by vary-
ing the degree of A,,, whichin effect controlsthe prior information
regarding the strength of each eigenfunction, an observation due
to [9]. We therefore define the generalized correlation kernel as:

M

Ra(%,¥) = Y (An)*6n(X)n(y) (6)

n=1

and notice that the parameter d controls the locality of the kernel;
for small d, R4 approachesadeltafunction in the spaceof ¢.,, and
asd getslarger, R4 gets smoother®.

Each of these correlation kernels is a function in four variables
(z1,%2,y1,¥2) S0, to effectively visualize them, we hold the z1 and
z positions constant and vary y1 and y». Figure 1 shows several
examples of the kernels generated with varying d, for a set of
924 grey-level 128 x 64 images of pedestrians that have been
normalized to the same scale and position; this database has been
used in [6], [4], and [8]. The progressive delocalization of the

1This particular parameterization is one of many possibilities.

kernelswhen d isvaried from 0.0to 1.0is evident in thesefigures.

3. BAYESIAN MOTIVATION

Our choice of the correlation function, R, as the kernel can be
motivated from aBayesian perspective; see[12] and [10] for back-
ground material. Consider the general regularization problem,

N

min H(f]1= > (ui — F(x:))? + 2 F 1% (7)
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where, in a Bayesian interpretation, the dataterm isamodel of the
noise and the stabilizer is a prior on the regression function f. If
we assume that the data, y;, are affected by additive independent
gaussian noise, then we can show that the stabilizer measures
the Mahalanobis distance of f from the mean signal. This also
corresponds to a zero mean multivariate gaussian density on the
Hilbert space of functionsdefined by R and spanned by ¢, e.g., the
space spanned by the principal componentsintroduced in Section
2. FromaBayesianpoint of view, under theassumption of gaussian
noise, R is the right kernel to use, whenever it is available. It is
important to note that in our SVM and BPDN formulations, we use
gaussian priors but do not assume gaussian additive noise in the
data.

4. SUPPORT VECTOR MACHINESAND SPARSITY

The operational definition of a sparse representation that we will
use in the context of regression is the smallest subset of elements
from alarge dictionary of features such that alinear superposition
of these features can effectively reconstruct the original signal.
Here, we present a brief introduction to Support Vector Machine
regression; for amore in depth treatment of this subject, the reader
isreferred to [1], [11], [2], [3].

Given a kernel K that defines a RKHS and with the appropriate
choice of the scalar product induced by K, the empirical risk min-
imization regularization theory framework suggests to minimize
the following functional:

N
1
H[f]= 5> Iz =) 12, +lfk ®)
i=1

where || f||% is as defined in Section 2. This corresponds to
minimizing the sum of the empirical error measured in L, and
asmoothness functional. The Support Vector Machine regression
formulation minimizes a similar functional, differing only in the
norm on the data term; instead of using the L, norm, the following
e-insensitive error function, called the L. norm, is used:

‘ N 0 if |[z: — f(xi)] < e
|zi = f(xi)|e = { |zi — f(xi)| — € otherwise

Thefunctional that is minimized is therefore:

9

N
1
Hif1= =Y |z — fx)le + 0 F% (10)
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yielding afunction of the form:
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Figure 2: Out-of-sample L, reconstruction error comparison be-
tween SVM with correlation kernel R1.0, SVM with gaussian ker-
nel (¢ = 3.0), and PCA, where the input is a random sampling
of the original image. Each of these figures represents a different
sized sampling, (a) 2 of the image asinput and (b) 2 of theimage
asinput.
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where the coefficients ¢ are obtained by solving a quadratic pro-
gramming problem [11] [5] [3]. Depending on the value of the
sparsity parameter v, the number of ¢; that differ from zero will be
smaller than N; the data points associated with the non-zero co-
efficients are called support vectors and it is these support vectors

that comprise our sparse approximation.

5. RECONSTRUCTION

In the case of image reconstruction and compression when we do
not assumeany prior knowledge (other than that we are considering
images), we can use techniqueslike JPEG, wavelets, and regular-
ization using a spline or gaussian kernel. When we have statistical
information on the class of functions we are reconstructing, asin

the case of the correlational structure of the classto which the im-
age to be reconstructed belongs, we may be able to obtain better
compression by using this information.

The generalized correlation kernels are generated from a training
set of 924 grey-level 32 x 16 images of pedestrians. We test the
correlationkernelswith d = 1.0 by analyzingthe SVM reconstruc-
tion of pedestrian images not in the training set and comparing to
PCA. For each image in the out-of-sample test set, we randomly
partition the pixels into a set that has A pixels — the input set,
Finpur —and a set consisting of the remaining (N — M) pixels—
thetest set, Fieet-

In the case of the SVM, to find the sparse set of basis functions
that minimizes the error over the input subset, Fiyp.¢, We obtain
the coefficients of reconstruction by minimizing:

M
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The portion of the coefficients, ¢;, that will be O is determined by
the variable C'.
Out-of-sample performance in each case is determined by recon-
structing the full image and measuring the error over the pixelsin
Fiest. Wemeasure performance as the error achieved with respect
to the number of basisfunctionsusedin the aboveformulations. In
SVM regression, the number of basisfunctionsis varied by chang-
ing the e parameter. To compare with PCA-based reconstruction,
for agiven ¢, we use, asthe number of principal componentsfor the
reconstruction, the number of support vectors found in the SYM
formulation. In our experiments, the size of the input set is varied
as 1N and 2V; error is measured in Lz. As a benchmark meant
to ensure that the performance of the system using SVM with the
correlation kernels is not due exclusively to the SYM machinery,
we also show the results using SVM with gaussian kernels.
The results of these reconstructions, averaged over 50 out-of-
sample images, are shown in Figures 2a and b for the cases of
using 1 and 2 of the pixels asinput, respectively. From these per-
formanceresults, we can seethat, even though the PCA formulation
minimizes L, error and SVM regressionis minimizing error in the
RKHS induced by the e-insensitive norm, SVM performs better
than PCA even when measuring error in L, on out-of-sample test
data. Furthermore, SVM with the correlation kernels outperforms
SVM with gaussian kernels, showing that the correlation kernels
encode important prior information on the pedestrian class. The
difference in performance is most pronounced for the reconstruc-
tions that use the smallest input set.
Figure 3 presents an extreme case where the input data is a ran-
dom set of only %th (6.25%) of the image pixels; here, a higher
resolution image (64 x 32) is used. The SVM reconstruction with
correlation kernelsrecovers more of the structure of the pedestrian
than PCA, due to the smoothnesspreserving properties of the SVM
approach to function approximation [11].
It ispossibleto use this same framework to superresolvean image,
that is, reconstruct it at afiner level of detail than was originally
presentin theimage. Thiscould be useful if, for instance, we have
an image of a person’s face that is too small for us to be able to
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Figure 3: Reconstruction comparison for a higher resolution image (64 x 32) using identical random sets of %th of the original pixels as
input; (a) the original image, (b) PCA reconstruction with 74 basis functions, (c) SVM reconstruction with 74 basis functions (e = 10 for
the SVM), (d) locations of the support vectors are denoted as black values. With a small subset of the original image as input, the SVM

reconstruction is clearly superior to the PCA reconstruction.

recoghizewho it is; after superresolving theimage, the details that
emerge could allow us to recognize the person. For brevity, we
refer the reader to [7] for the details of this work.

6. CONCLUSION

We have shown that the use of class-specific correlation-based
kernels, when combined with the notion of sparsity, results in a
powerful signal reconstruction technique. In a comparison to a
traditional method of signal approximation, Principal Components
Analysis, our approach achieves a more sparse representation for
agiven level of error.

Our approach of using a dictionary of class-specific correlation
kernels to obtain sparse representation of a signal leads to an in-
teresting question: could this sparse representation that has been
generated to approximate asignal be used to classify different sig-
nals? In other words, isthe representation of pedestriansviasparse
sets of correlation-based basis functions different enough from the
representation of other objects (or all other objects), so that it can
beused asamodel for that classof objects? Therepresentationswe
generate are derived through an argument that minimizes error for
reconstructing the image. This, however, says nothing about the
ability of that same representation to be usedto differentiate images
of different objects. Whether or not this can be done is an open
question; [7] presents a preliminary discussion of this approach.
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