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ABSTRACT
This paper discusses various aspects of smoothing techniques in
maximum entropy language modeling, a topic not sufficiently cov-
ered by previous publications. We show (1) that straightforward
maximum entropy models with nested features, e.g. tri–, bi–,
and unigrams, result in unsmoothed relative frequencies models;
(2) that maximum entropy models with nested features and dis-
counted feature counts approximate backing–off smoothed rela-
tive frequencies models with Kneser’s advanced marginal back–
off distribution; this explains some of the reported success of max-
imum entropy models in the past; (3) perplexity results for nested
and non–nested features, e.g. trigrams and distance–trigrams, on a
4–million word subset of the Wall Street Journal Corpus, showing
that the smoothing method has more effect on the perplexity than
the method to combine information.

1. MAXIMUM ENTROPY APPROACH

The maximum entropy principle [1, 5] is a well-defined method for
incorporating different types of features into a language model [4,
9]. For a wordw given its historyh it has the following functional
form [2, pp. 83-87]:

p�(wjh) =
exp
�P

i
�ifi(h;w)

�
Z(h)

(1)

Z(h) :=
P
~w

exp

�P
i

�ifi(h; ~w)

�
;

where for each featurei we have a feature functionfi(h;w) 2
f0; 1g that is activated if featurei exists in(h;w), and a weight
parameter�i, with parameter set� := f�ig. Consideringcon-
ditional probabilities is an important difference to most standard
publications. For the parameter estimation of� we consider the
log-likelihood functionG(�) for a training corpus of running
wordsw1; :::; wn; :::; wN :

G(�) :=

NX
n=1

log p�(wnjhn) =
X
hw

N(h; w) log p�(wjh) ;

with the usual count definitionsN(h;w). We take the partial
derivatives with respect to each of the parameters�i, set them to
zero, and obtain the so–called constraint equation for each feature
i:

@G

@�i
= � Qi(�) + Ni = 0

Qi(�) :=
X
hw

N(h) p�(wjh) fi(h;w)

Ni :=
X
hw

N(h; w) fi(h;w) ;

with the �–dependent auxiliary functionQi(�) and the�–
independent feature countsNi. There is no closed solution to the
set of constraint equations. We train them with the Generalized
Iterative Scaling (GIS) algorithm [3] implemented as described in
[10] with the addition of Ristad’s speedup technique [11].

In this paper the baseline maximum entropy model uses the
nested trigram, bigram, and unigram features with(h; w) =
(u; v; w):

fuvw(~u; ~v; ~w) =

�
1 if w = ~w andv = ~v andu = ~u
0 otherwise

fvw(~u; ~v; ~w) =

�
1 if w = ~w andv = ~v
0 otherwise

fw(~u; ~v; ~w) =

�
1 if w = ~w
0 otherwise

Motivated by the good results in [10], the baseline model is ex-
tended by non–nested features, either distance–2–trigrams with
(h; w) = (t; u; v; w):

ft�vw(~t; ~u; ~v; ~w) =

�
1 if w = ~w andv = ~v andt = ~t
0 otherwise

ftu�w(~t; ~u; ~v; ~w) =

�
1 if w = ~w andu = ~u andt = ~t
0 otherwise

or, alternatively, distance–3–bigrams and distance–4–bigrams with
(h; w) = (s; t; u; v; w):

ft��w(~s; ~t; ~u; ~v; ~w) =

�
1 if w = ~w andt = ~t
0 otherwise

fs���w(~s; ~t; ~u; ~v; ~w) =

�
1 if w = ~w ands = ~s
0 otherwise

As opposed to the non–nested features, closed solutions exist in
part for nested features, allowing some analysis of the maximum
entropy models.

2. SMOOTHING OF MAXIMUM ENTROPY MODELS

2.1. Unsmoothed Models: Relative Frequencies

For the straightforward baseline maximum entropy model, there is
a closed solution due to the nested features. The constraint equa-
tions X

~u;~v; ~w

N(~u; ~v) � p�( ~wj~u; ~v) � fuvw(~u; ~v; ~w)

= N(u; v) �
e
�uvw+�vw+�w

Z(u; v)
= N(u; v; w)



result in relative frequencies:

e
�uvw+�vw+�w

Z(u; v)
=

N(u; v; w)

N(u; v)
:

Since the probabilities of all seen trigrams of a given history(u; v)
sum up to1, the probability of unseen trigrams is not properly de-
fined using the model of Eq. (1) because ofe�uvw+�vw+�w > 0,
even though bigram and unigram features exist for backing–off.
Therefore, smoothing must be applied, a technique that redis-
tributes probability mass from seen to unseen events [8].

2.2. Smoothing Using Cut–Offs and Absolute Discounting

We do not know an obvious smoothing technique for maximum
entropy, so we adapted techniques from known smoothing meth-
ods:

� Cut–Offs: Probability mass is gained by omitting featuresi
with a feature countNi of thresholdk and below. However,
this results in a coarser model.

� Absolute Discounting: This method was first presented in
[10] without detailed analysis. All featuresi with a positive
feature count are allowed. Probability mass is gained by re-
ducing the feature countNi by a fixed discounting valued.
It is important to note that we now diverge from the max-
imum likelihood principle and risk inconsistent constraint
equations. In the experiments, we use three different dis-
counting valuesdT , dB , anddU for trigram, bigram and
unigram features, respectively.

We analyse the effect of the smoothing methods for the case that all
bigram features are seen and thus not smoothed. This is unrealistic
but leads to a closed solution. If we apply both smoothing methods
at the same time, we get the model:

p�(wju; v) =

8><
>:

e
�uvw+�vw

Z(u; v)
if N(u; v; w) > k

e
�vw

Z(u; v)
otherwise

(2)

and the constraint equations for the upper branch:X
~u;~v; ~w

N(~u; ~v) � p�( ~wj~u; ~v) � fuvw(~u; ~v; ~w)

= N(u; v) �
e�uvw+�vw

Z(u; v)

!
= N(u; v; w)� d ;

resulting in:

e
�uvw+�vw

Z(u; v)
=

N(u; v; w)� d

N(u; v)
: (3)

Eq. (3) is used for the solution of the constraint equations for the
lower branch:X

~u;~v; ~w

N(~u; ~v) � p�( ~wj~u; ~v) � fvw(~u; ~v; ~w)

=
X

~u: N(~u;v;w)�k

N(~u; v) �
e
�vw

Z(~u; v)

+
X

~u: N(~u;v;w)>k

N(~u; v; w)� d = N(v; w) ;

resulting in:

e
�vw =

N�k(�; v; w) + n>k(�; v; w) � dX
~u: N(~u;v;w)�k

N(~u; v)

Z(~u; v)

�
N�k(�; v; w) + n>k(�; v; w) � dX

~u

N(~u; v)

Z(~u; v)

; (4)

with

N�k(�; v; w) :=
X

~u: N(~u;v;w)�k

N(~u; v; w)

n>k(�; v; w) :=
X

~u: N(~u;v;w)>k

1 :

The approximation is possible because almost all trigrams are un-
seen in real cases. TheZ(u; v) computation, also using Eq. (3),
results in

Z(u; v) =

X
~w: N(u;v; ~w)�k

e
�
v ~w

N�k(u; v; �) + n>k(u; v; �) � d

N(u; v)

; (5)

with

N�k(u; v; �) :=
X

~w: N(u;v;w)�k

N(u; v; ~w)

n>k(u; v; �) :=
X

~w: N(u;v; ~w)>k

1 :

Note that
N�k(u; v; �) + n>k(u; v; �) � d

N(u; v)

is the probability mass for redistribution forh = (u; v). Inserting
Eqs. (3), (4), (5) into the original model Eq. (2) results in the final
backing–off model. For cut–offs (d = 0, k > 0) we have:

p�(wju; v) =

=

8><
>:

N(u; v; w)
N(u; v)

if N(u; v; w) > k

N�k(u; v; �)

N(u; v)
� �uv(w) otherwise

with

�uv(w) :=
N�k(�; v; w)P

~w: N(u;v;w)�k
N�k(�; v; ~w)

:

Thus, the resulting model is a standard backing–off model [8],
but with a back–off distribution�uv(w) not known from previous
publications. However, this back–off distribution is not properly
defined if

P
~w: N(u;v;w)�k

N�k(�; v; ~w) = 0. For absolute dis-
counting (0 < d < 1, k = 0), we have

p�(wju; v) =

=

8><
>:

N(u; v; w)� d
N(u; v)

if N(u; v; w) > 0

n>0(u; v; �) � d
N(u; v)

� �uv(w) otherwise



Table 1: CPU hours per GIS iteration for maximum entropy mod-
els with different features on an Alpha 21164 500 Mhz processor
on the WSJ0–4M corpus,k = 0.

Features CPU hours

tri–/bi–/unigrams 2.8
tri–/bi–/unigrams, distance–2–trigrams 3.8
tri–/bi–/unigrams, distance–3/4–bigrams 10.3

with

�uv(w) :=
n>0(�; v; w)P

~w: N(u;v; ~w)=0
n>0(�; v; ~w)

:

Thus, the resulting model is a standard backing–off model [8] with
a back–off distribution�uv(w) known as Kneser’s marginal distri-
bution [7]. A closed solution including unigram features is not yet
found for both smoothing approaches, but we assume that the re-
sulting models would be similar to the above.

3. EXPERIMENTAL RESULTS

For the experiments, a 4.5–million word text from the Wall Street
Journal task was used (exact size: 4,472,827 words). The vocabu-
lary consisted of approximately 20,000 words (vocab20o.nvp ).
All other words in the text were replaced by the label<UNK>for
the unknown word. The test set perplexity was calculated on a
separate text of 325,000 words. In the perplexity calculations, the
unknown word was included. The corpora used are the same as in
[8] and [9]. The CPU time needed for the improved GIS training
can be seen in Table 1.

For nested features, we compared the two smoothing meth-
ods for maximum entropy with known smoothing methods for rel-
ative frequencies [8]: (1) backing–off with absolute discounting
and relative frequencies back–off distribution�(�), (2) the same,
but with Kneser’s marginal back–off distribution, and (3) the stan-
dard smoothing method at our site, interpolation with absolute dis-
counting and singleton back–off distribution:

q(wju; v) =
maxfN(u; v; w)� d; 0g

N(u; v)

+
n>0(u; v; �) � d

N(u; v)
� �(wjv)

�(wjv) =
n1(�; v; w)X
~w

n1(�; v; ~w)

with
n1(�; v; w) :=

X
~u: N(~u;v;w)=1

1 :

The respective smoothing methods were recursively applied to the
back–off distributions�(�). For smoothed relative frequencies and
maximum entropy models the discounting parametersd were esti-
mated by leaving–one–out [8]. In Table 2 we see that the perplex-
ity for the maximum entropy model with absolute discounting is
better than explicit backing–off with relative frequencies as back–
off distributions, but worse than explicit backing–off with marginal

Table 2: Test set perplexities for trigram language models with
different smoothing methods on the WSJ0–4M corpus.

Model PP

smoothed relative frequencies:
backing–off 163.4
backing–off, marginal distribution 153.2
standard model 152.1

maximum entropy (20 iterations):
cut–offs,k = 1 178.7
absolute discounting 157.9

interpolation of standard model
and maximum entropy (20 iterations):

cut–offs,k = 4, � = 0:3 148.2
absolute discounting,� = 0:3 150.0

back–off distributions. This underlines that the discounted max-
imum entropy model only approximates the latter. The cut–off
maximum entropy model performs worse, probably because of the
poorer modeling and the problematic back–off distribution�(�).
The standard model performs best, because it employs interpo-
lation instead of backing–off for smoothing. The superiority of
smoothing by interpolation over smoothing by backing–off has
been observed earlier [8]. Interpolating the standard model with
the maximum entropy models

p(wju; v) = (1� �) � q(wju; v) + � � p�(wju; v)

results in a modest improvement only. All these results show
that the performance of a language model with nested features is
clearly dominated by the smoothing method, not by the way the
features are combined. A baseline maximum entropy model with
a better smoothing method or more efficient features may exist but
still has to be found.

For non–nested features we compared the effects of extend-
ing the models by distance–2–trigrams. For smoothed relative
frequencies, each of the three trigram models was separately
smoothed by absolute discounting and interpolation, like the stan-
dard model, with and without the singleton back–off distribution
�(�). The discounting parametersd were estimated using leaving–
one–out. The three smoothed models were combined by linear
interpolation

p(wjs; t; u; v) =

= (1� �1 � �2) � q(wju; v)+�1 � q(wjt; �; v)+�2 � q(wjt; u; �)

with interpolation parameters�1, �2 estimated by a simplified
cross validation method. The contesting maximum entropy model
was extended by the distance–2–trigram features and initialized
for GIS training with the parameters from the baseline nested tri-
gram model. The discounting parameterdD for absolute discount-
ing for both distance–2–trigram features and the number of GIS
iterations was optimized on the testing data. Thus, the training
procedure was slightly in favour of the maximum entropy models.
Even though, as seen from Table 3, the maximum entropy models
are still outperformed by the smoothed relative frequencies model
with marginal back–off distribution. The interpolation of the max-
imum entropy model with the standard model results in a slight
perplexity improvement only. Again, results are dominated by the
smoothing method.



Table 3: Test set perplexities for trigram and distance–2–trigram
language models on the WSJ0–4M corpus.

Model PP

interpolation of smoothed relative frequencies:
without singleton smoothing 151.5
with singleton smoothing 138.6

maximum entropy:
absolute discounting,dD = 0:5, 3 iter. 146.9

interpolation of
standard model and maximum entropy:

absolute discounting,dD = 0:5, 3 iter.,� = 0:5 141.9

Table 4: Test set perplexities for trigram, distance–3–bigram and
distance–4–bigram language models on the WSJ0–4M corpus.

Model PP

interpolation of smoothed relative frequencies:
singleton distribution 148.6

maximum entropy:
absolute discounting,dD = 0:5, 3 iter. 147.1

interpolation of
standard model and maximum entropy:

absolute discounting,dD = 0:5, 3 iter.,� = 0:6 142.7

The extension of the trigram models by distance bigrams was
performed in the very same way, but with a slightly different re-
sult. As can be seen from Table 4, the maximum entropy model
now reaches the performance of the smoothed relative frequencies
model. An explanation could be that smoothing has a weaker ef-
fect on bigrams because bigrams are better trained than trigrams.
Thus, the way in which the features are combined becomes more
dominant, obviously in favour of the maximum entropy model, as
theory suggests [1, 9].

Compared to the backing–off smoothed relative frequencies
model without marginal back–off distribution we get a reduction in
perplexity by 10% for the maximum entropy model with distance–
m–gram features. A similar figure is reported in [9] using Turing–
Good smoothing [6] for the maximum entropy model [9, p. 204], a
smoothing method comparable to absolute discounting [8]. How-
ever, as can be seen from Table 2, roughly a third of this perplexity
reduction is already achieved by the marginal back–off distribu-
tion implicitly modeled by the maximum entropy model without
distance–m–grams, a fact not discussed in earlier publications.

4. CONCLUSION

In this paper we discussed various aspects of smoothing techniques
in maximum entropy language modeling. For nested features,

� the unsmoothed maximum entropy model leads to relative
frequencies without proper probabilities for events not seen
in the training;

� discounted feature counts approximate the well–known
backing–off smoothing implicitly using Kneser’s advanced
marginal back–off distribution;

� the discounted maximum entropy model is outperformed by
relative frequencies models with state–of–the–art smooth-
ing.

For non–nested features,
� no closed solutions are known;
� if smoothing is imortant, smoothing methods, not the

method of integrating information, dominate the global per-
formance of language models;

� if the features become better trained, smoothing becomes
less important, and maximum entropy appears to outper-
form linear interpolation.

The authors would like to thank Christoph Hamacher for his
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