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ABSTRACT

We present methods for fixed-lag smoothing using Sequential Im-
portance sampling (SIS) on a discrete non-linear, non-Gaussian
state space system with unknown parameters. Our particular ap-
plication is in the field of digital communication systems. Each
input data point is taken from a finite set of symbols. We represent
the transmission media as a fixed filter with a finite impulse re-
sponse (FIR), hence a discrete state-space system is formed. Con-
ventional Markov chain Monte Carlo (MCMC) techniques such
as the Gibbs sampler are unsuitable for this task because they can
only perform processing on a batch of data. Data arrives sequen-
tially, so it would seem sensible to process it in this way. In ad-
dition, many communication systems are interactive, so there is a
maximum level of latency that can be tolerated before a symbol
is decoded. We will demonstrate this method by simulation and
compare its performance to existing techniques.

1. INTRODUCTION

We are interested in obtaining estimates of the statesxt�p at time
t, given observationsy0:t, that is there is a fixed lag of lengthp af-
ter which we will output our estimates ofx. For example, in many
communications systems, even interactive ones, a small amount of
delay or latency can be tolerated. By allowing a delay of around
4–5 times the channel length, significant gains in performance can
be obtained [8].

1.1. Model Formulation and assumptions

We shall assume a state-space model, where the current state,xt,
is dependent only upon the previous state and the current input,
bt. The observation,yt is dependent on the current state, some
parameters,�, and a noise term,vt:

xt = f(xt�1) + bt

yt = g(xt; �) + vt

We assume that:

� We can evaluatep(y jx; �).

� We can sample fromp(� jx;y) by some means.

� x is discrete, or ifx is continuous we require thatf(:) is
linear and thatp(y jx; �) is Gaussian.
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For our particular application, namely a digital communications
system,x is discrete. For the rest of this paper we shall describe
the methods assuming a discrete state and continuous unknown
parameters, however they can be easily adapted to the linear Gaus-
sian continuous state case by using techniques described in [2].

1.2. The Particle filter

Our method is based upon the particle filter ideas seen in [6], [11],
[1] and [12]. We are interested in the distribution of all the states
up to timet � p, given the received data up to the current time
t, that isp(x0:t�p jy0:t), the fixed-lag smoothing density where
a collection of states is denoted byx0:t = fx0; : : : ;xtg. This
distribution is represented by a finite number of state trajectories,
x
(i)
0:t�p, or ‘particles’, each with an associated weight,w(i). With

the arrival of a new data point, the estimate of the new probability
distribution is made by propagating the current distribution — a
draw of the new state and calculation of the new weight (for each
trajectory) — using a Bayesian update rule.

1.3. Organisation

The remainder of this paper is organised as follows: The basic
technique of Sequential Importance Sampling is described in sec-
tion 2. Section 3 describes two methods for achieving fixed-lag
filtering using the filtering density,p(xt jy0:t). start or the end of
the time lag. Section 4 describes a method for fixed-lag filtering
by updating the smoothing density,p(xt�p jy0:t). A comparison
of the algorithms in the form of simulations on a digital communi-
cations system is presented in section 5.

2. SEQUENTIAL IMPORTANCE SAMPLING (SIS)

Suppose we haveN samplesx(i)0:t from the probability distribu-
tion of interest at timet, p(x0:t jy0:t). With the arrival of a
new data pointyt+1, we would like to update this distribution to
p(x0:t+1 jy0:t+1) without modifying the simulated past trajecto-

ries,x(i)0:t. Normally we can calculate the likelihoodp(yt jxt) and
we know the state transition densityp(xt+1 jxt). We may do this
by using importance sampling exploiting Bayesian updating as fol-
lows (without explicitly stating dependence on parameters,�):

p(x0:t+1 jy0:t+1) =
p(yt+1;xt+1 jxt)

p(yt+1 jy0:t)
� p(x0:t jy0:t) (1)

Typically one cannot calculate the normalising term
p(yt+1 jy0:t), however it is not required since it is indepen-
dent of the state trajectory. The new state is chosen by sampling



from an importance function. If we choose it to be of the form:

�(x0:t+1 jy0:t+1) = �(xt+1 jx0:t;y0:t+1)�(x0:t jy0:t)

= �(x0 jy0)
t+1Y
k=1

�(xk+1 jx0:k;y0:k+1)

we may evaluate the importance weights recursively. The unnor-
malised incremental importance weights are given by:

w
(i)
t+1 =

p(yt+1;xt+1 jxt)

�(x0:t+1 jy0:t+1)

We may choose a suitable importance function, exploiting any fac-
torisation of the joint prediction densityp(yt+1;xt+1 jxt), so as
to simplify this expression.

Statistics of interest may then be obtained as follows:

Eff(x)g =
NX
i=1

f(x(i))
w(i)PN

j=1 w
(j)

(2)

If the variance of the weights becomes too large, we may re-
sample the trajectories with the probability of each trajectory being
selected equal to the corresponding weight. A useful measure of
whether to resample is the effective sample size [11], which tells
us how many particles are actually contributing significantly to the
distribution.

3. FIXED-LAG SIMULATION USING THE FILTERING
DENSITY

We may adapt the standard SIS technique to achieve fixed-lag
smoothing, whilst updating the filtering density. There are two
ways to achieve this:

1. The simplest way to achieve this is to update the filtering
density as each data point arrives, i.e. trackp(x0:t jy0:t),
and then output the decision after a lag ofp symbols.
For this updating we may use any of the standard im-
portance distributions ranging from the prior distribution,
p(xt+1 jxt), introduced by [7, 6] to the optimal importance
function, p(xt+1 jyt+1;xt; �), introduced by [14, 9, 11].
For a review of these methods see [4].

2. We may use the filtering densityp(x0:t�p jy0:t�p) and at-
tempt to make more accurate draws of the new state by
drawing the new state from the importance distribution
�(xt�p+1 jyt�p+1;xt�p; �) = p(xt�p+1 jy0:t+1).

3.1. Current time filtering density

The optimal method for filtering the data without lookahead is
the method ofsequential imputationsas described in [9, 11]. In
this case the parameters are treated as ‘nuisance parameters’ and
analytically marginalised. At each step only a draw of the state
from p(xt+1 jxt;yt+1) is required. The incremental importance
weight is given byp(yt+1 jxt), and updates of the mean and vari-
ance of the marginal distribution of the parameters,�, are ob-
tained by recursive relationships derived from the matrix inversion
lemma.

If � cannot be marginalised we may proceed in the following
manner. The joint prediction density may be factorised:

p(yt+1;xt+1; �jx0:t;y0:t) = p(xt+1jxt; �;yt+1)�

p(yt+1jxt; �) p(�jx0:t;y0:t) (3)

3.1.1. Method

Let us assume we have available at timet,N samplesx(j)t from the
distribution p(xt jy0:t), possibly with associated weightsw(j).
We may update to the distributionp(xt+1 jy0:t+1) as follows:

1. For each j:

(a) Draw�(j) from p(�jx
(j)
0:t ;y0:t).

(b) Drawx(j)t+1 from p(xt+1j�
(j);x

(j)
t ;yt+1).

(c) Calculate incremental importance weights from:
w
(j)
t+1 = p(yt+1j�

(j);x
(j)
t ).

2. If the effective sample size is too small, resample the tra-
jectories with probability proportional to the importance
weights and reset the weights to equal values.

At time t, we calculate the marginal posterior state probabili-
ties at timet � p as given by equation 2. We may now decide on
the state by choosing the one with marginal maximum posterior
probability (a marginal MAP estimate). This estimate is for output
only — this does not affect the state trajectories or their weights in
further iterations of the algorithm.

3.2. Lagged time filtering density

To simplify the expressions, we will shift our time-base forward
by p samples (t! t+ p). Hence at timet we will make estimates
of xt using information fromy0:t+p.

The joint prediction density may be factorised as follows:

p(yt+1;xt+1; � jx0:t;y0:t) = p(xt+1 jxt; �;yt+1)�

p(yt+1 jxt; �) p(� jx0:t;y0:t) (4)

By using this factorisation, we may make new draws for the pa-
rameters at each time without having to draw the states from the
predictive density,p(xt+1 jxt;yt), as suggested by [10]. It is pos-
sible to sample directly from the first term; however we have cho-
sen instead to use the importance function:

�(xt+1 jxt; �;yt+1) = p(xt+1 jxt; �;yt+1:t+p+1) (5)

with the hope of using the additional data to bias the draw towards
states that will be kept at later iterations. This may be accom-
plished by using techniques described by [2], [5] and [3], discard-
ing the unwanted imputed valuesxt+2:t+p+1. This introduces the
importance weight:

wt+1 =
p(yt+1 jxt+1; �) p(yt+1:t+p+1 jxt; �)

p(yt+1 jxt; �) p(yt+1:t+p+1 jxt+1; �)
(6)

The first term of both numerator and denominator are easy to cal-
culate. The second terms may be simply calculated from the terms
evaluated in a forward pass of the sampling algorithm through the
data [3], which has already been made for the numerator when
sampling from equation 5.

Note that in this case the draw for the parameters does not in-
clude any information from the extra received data,yt+1:t+p+1.
However, in the case of fixed parameters, the prior rapidly be-
comes quite strong so any additional information in these bits does
not affect the posterior for� very much.



3.2.1. Method

Let us assume we have available at timet,N samplesx(j)t from the
distributionp(xt jy0:t),

1 possibly with associated weightsw(j).
At time t+1 we have available the additional observationyt+p+1.
We may update these samples to the distributionp(xt+1 jy0:t+1)
as follows:

1. For eachj:

(a) Draw�(j) from p(� jx
(j)
0:t ;y0:t).

(b) Drawx(j)t+1 from equation 5.

(c) Calculate importance weights from equation 6.

2. If the effective sample size is too low, resample as before.

4. FIXED-LAG SIMULATION USING THE SMOOTHING
DENSITY

Rather than tracking the filtering density,p(x0:t jy0:t), we may
track the smoothing density,p(x0:t�p jy0:t), to achieve fixed-lag
smoothing. Ideologically this is a better approach, although it in-
troduces some practical problems.

The fixed lag smoothing distribution is given by:

p(x0:t�p+1 jy0:t+1) = p(x0:t�p jy0:t)�

p(yt+1 jy0:t;xt�p+1) p(xt�p+1 jyt�p+1:t;x0:t�p)

p(yt+1 jy0:t)
(7)

We define the importance distribution in the usual manner and
the unnormalised incremental importance weight is given by:

wt+1 =
p(yt+1 jyt�p:t;x0:t�p+1) p(xt�p+1 jyt�p+1:t;x0:t�p)

�(xt�p+1 jx0:t�p;y0:t+1) p(yt+1 jy0:t)

(8)

For a general distribution, there are two problems:

1. The termp(yt+1 jyt�p:t;x0:t�p+1) cannot be evaluated.

2. The distribution �(xt�p+1 jx0:t�p;y0:t+1) =
p(xt�p+1 jyt�p+1:t;x0:t�p) is difficult to sample
from.

In some models we may assume that for a sufficiently large value
of p the termp(yt+1 jyt�p:t;x0:t�p+1) will be approximately
constant.2

To address the second problem we consider the case where the
statex is discrete and dependent on some (continuous) parameters
�. We now consider generating samples from the joint distribution
p(x; � jy) by using the following factorisation:

p(xt�p+1; � jy0:t;x0:t�p) =

p(xt�p+1 jx0:t�p;yt�p+1:t; �) p(� jy0:t;x0:t�p) (9)

Note that we can easily sample from the distribution:

p(xt�p+1; ext�p+2:t jx0:t�p;yt�p+1:t; �)

= p(xt�p+1:t j �;yt�p+1:t;xt�p) (10)

1Initial samples could be created by any batch-based MCMC method.
2A similar approximation is made in the communications literature con-

cerning trace-back in a Viterbi equalizer [13]. After a fixed delay the paths
stored in the Viterbi algorithm are assumed to have joined, or if not the
most likely path is chosen at this time.

as before. The imputed values,ext�p+2:t, are retained for use in the
next iteration. We cannot easily sample fromp(� jy0:t;x0:t�p);
however we may sample from the importance distribution:

�(� jy0:t;x0:t�p) = p(� jy0:t;x0:t�p; ext�p+1:t) (11)

This introduces the (incremental) importance weight:

wt+1 =

P
ext�p+1:t

p(� jy0:t;x0:t�p; ext�p+1:t)

p(� jy0:t;x0:t�p; ext�p+1:t)
(12)

At first glance it may appear that the numerator of equation 12
is expensive to calculate, however all the terms will be calculated
when sampling from equation 10: only a small number of addi-
tional calculations are required.

4.1. Method

Let us assume we have available at timet, N samplesx(j)t�p from
the distributionp(xt�p jy0:t), possibly with associated weights
w(j). At time t + 1 we have available the additional obser-
vation yt+1. We may update these samples to the distribution
p(xt�p+1 jy0:t+1) as follows:

1. For eachj:

(a) Draw�(j) from equation 11.

(b) Drawx(j)t�p+1; ex(j)t�p+2:t from equation 10 and draw

an additionalex(j)t+1 from p(xt+1jyt+1; ex(j)t ).3

(c) Calculate importance weights from equation 12.

2. If necessary, resample as before.

5. SIMULATIONS

5.1. Problem Formulation

Most digital communications systems transmit a signalfbtgwhere
the value of each of thebt are taken from a finite alphabet ofq
symbols. This is transmitted over a channel which may introduce
distortion and noise. The channel model used here is an FIR filter
with additive Gaussian noise:

yt =

n�1X
i=0

bt�ihi + vt (13)

bt 2 fS0; : : : ; Sq�1g (14)

vt
i:i:d:
� N(0; �2v) (15)

wherefytg is the observed signal,fbtg is the transmitted signal,
Si a symbol from the alphabet,h = fh0; : : : ; hn�1g is the chan-
nel filter,n is the number of filter taps andt is an integer.

This may be represented in an equivalent state-space form:8<
: xt =

�
0T 0
I 0

�
xt�1 +

�
1
0

�
bt

yt = hTxt + vt

(16)

wherext = [bt; bt�1; : : : ; bt�n+1]
T is the state (a vector of length

n) and0 is the null vector of lengthn� 1. A collection of states,
x1:t, can be exactly determined byfb1; : : : ; btg and some initial
conditions, given equation 16.

3This will be used in the next iteration.



5.2. Results

To compare methods we tried them on communications chan-
nels simulated directly from equation 13 using a binary ampli-
tude modulation scheme where bits are encoded as�1. All meth-
ods require an estimate of the initial density: this was obtained
using a Gibbs sampler (see [3] for details) which was run over
a frame of length 200 samples. The channel was chosen to be
h = [0:766; 0:575; 0:287]T and the lagp = 15, five times the
channel length. In all cases 151 particle streams were chosen. Re-
juvenation/resampling took place when the effective sample size
fell below 135. The input bit at timet was determined by sum-
ming over all states at timet which would have that bit set — this
is a marginal maximum a posteriori estimate.
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Figure 1: Top Graph shows Bit Error Rate vs. SNR for trained
Viterbi Algorithm. Bottom graph shows relative performance ratio
(ratio of Bit Error Rates) for proposed algorithms.

The performance of the various algorithms are shown in fig-
ure 1 relative to the Viterbi algorithm using 20 training symbols in
a frame of 200, the channel estimate being obtained by least mean
squared error. A value of 2 for performance indicates that the bit
error rate is reduced by a factor of 2. Note that no training is given
to our own algorithms: they are performing blind. However, if
training symbols are available, it is straightforward to make use of
them by incorporating them as prior information.

Differential encoding was not employed, but the bits were in-
verted when the phase ambiguity was incorrectly resolved (choos-
ing h = [�0:766; �0:575; �0:287]T is an equally probable so-
lution). In a practical system, either differential encoding or a
small number of known bits are required.

5.3. Comparison of Algorithms

All algorithms performed well, especially at high Signal-to-Noise
ratios. As expected, tracking the smoothing density directly pro-
duced the best results. The method using the lagged-time filtering
density was surprisingly poor. Since this ran almost a factor of 2
slower (it requires 2 forward passes — the most computationally
intensive part of the algorithms), it has limited use. If a reduced
complexity algorithm is required, one may use sequential imputa-
tions or the current-time filtering density method.

As with all implementations of the particle filter, the computa-
tions for the propagation of each state trajectory may be performed
in parallel, allowing significant speed-up in practical systems. This

propagation is the most computationally intensive part of the algo-
rithm: the complexity for each trajectory is similar to that of the
Viterbi algorithm.

Errors typically occurred in bursts: the burst could last up to 4
symbols (not necessarily all would be in error), though 2 was most
common.

Rejuvenation occurred most iterations on the sequential im-
putations algorithm, although the gap increased to about every 10
iterations with less noise present. When using the smoothing den-
sity, typical values for the time gap between rejuvenation varied
between 150 and 700 as noise levels decreased. The other algo-
rithms lie somewhere in between these two extremes.
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