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ABSTRACT

We consider the problem of estimating the directions of
arrival of multiple communication signals arriving at an uni-
form linear array. By considering the conjugate cyclic cross-
correlations of the sensor outputsand using a Bayesian frame-
work, we propose a direction finding algorithm that allows
us to estimate the directions of arrival for a more signals than
sensors scenario. The algorithm does not need any training
sequence and only requires a priori knowledge of the cyclic
frequencies and the number of sources. It is also possible to
estimate the directions of arrival in a multi-path fading en-
vironment under certain conditions.

1. INTRODUCTION

In the last few years, due to the advances in mobile commu-
nications and the limitation of the available spectrum, there
has been an interest in incorporating knowledge of the di-
rections of the signals to enhance the desired signal in the
presence of interferers. The objective of direction finding is
the estimation of the directions of arrival (DOAs) of signals
of interest (SOIs) at the sensor array. Various algorithms,
mainly subspace based methods, such as MUSIC and ES-
PRIT, have been proposed for the estimation of the DOAs.

Communication signals are cyclostationary due to peri-
odicity corresponding to their pulse rates or carrier frequen-
cies. Compared with conventional correlation based meth-
ods, algorithms that exploit this cyclostationarity yield bet-
ter parameter estimates in the presence of interferers that do
not exhibit the same cyclic features . The cyclic-selectivity
property allows the cyclostationary algorithms to discrimi-
nate in favour of the signals of interest in the presence of
interfering signals. Cyclic direction finding methods have
been proposed, that incorporate the cyclostationary charac-
teristic to improve the performance. A cyclic-MUSIC method
was proposed in [1, 6] and a least-squares method based on
a LP model of the sensor outputs was presented in [5].

In this paper, we propose a direction finding algorithm
based on the conjugate cyclic cross-correlation function of

the sensor outputs. By considering the estimation error of
the sample conjugate cyclic cross-correlation function (CCCF)
and by using a Bayesian estimation criterion, we are able to
obtain the DOAs of the signals. The DOAs can be estimated
even when there are more signals than sensors. Cyclic al-
gorithms based on cyclic-MUSIC were presented in [4] us-
ing cyclic cumulants, and in [2] using minimum-redundancy
linear arrays for a more signals than sensors scenario. In this
paper, we show that by using only second order statistics and
an uniform linear array we can estimate the DOAs of signals
in a Bayesian framework. The algorithm does not depend on
the noise distribution as long as the noise is wide-sense sta-
tionary. The algorithm does not use any training data and
only requires information about the cyclic frequencies. It is
also possible to estimate the DOAs in a multi-path fading en-
vironment under some conditions.

2. PROBLEM STATEMENT

We consider the narrow-band signal model of L signals im-
pinging on an array of M sensors:

x(t) = A(�)s(t) + n(t) (1)

where

x(t) = [x1(t); ::;xM(t)]T are the observations(2)

s(t) = [s1(t); ::; sL(t)]
T are the signals (3)

n(t) = [n1(t); ::;nM(t)]T is the noise vector (4)

A(�) = [a(�1); ::; a(�L)] (5)

The steering vector a(�l) is:

a(�l) = [1; e�j2� l; ::; e�j2�(M�1) l]T (6)

 l =
d

�
sin(�l)

where � is the wavelength of the signals, d is the inter-sensor
spacing and �l is the direction of arrival (DOA) of the lth

signal.



The source signals are second order cyclostationary; here
we consider them to be digitally modulated communication
signals:

sl(t) =
X
k

Albl(k)pl(t� kTl � �l)e
j2�folt (7)

whereAl; �l; fol are respectively the constant amplitude, the
delay and the frequency offset of the lth signal and pl(t) is
the shaping pulse.

Our aim is to estimate the directionsof arrival� = f�lg
L
l=1

from N samples of x(t). We make the following assump-
tions:

(A1) The source signals are zero mean, statistically inde-
pendent, second order cyclostationary processes.

(A2) The symbols bl(k) are zero-mean, stationary, uncorre-
lated and uniformly distributed over a finite alphabet.

(A3) The additive noisen(t) is a wide-sense stationary pro-
cess.

(A4) The source signals and the noise are statistically inde-
pendent.

(A5) x(t) satisfy the mixing condition.

3. CYCLIC CORRELATION MODEL

Our algorithm is based on the CCCF of the sensor outputs.
Most signals (e.g : BPSK, MSK, CPFSK) are conjugate cy-
clostationary at twice their frequency offset (or carrier fre-
quency). In this paper, we assume that this frequency, which
is related to the cyclic frequency � by � = 2fol, is known
or has been estimated. The frequency offsets of the multiple
signals can be estimated from the samples of one of the sen-
sor outputs using the blind frequency offset estimation algo-
rithm we presented in [3].

We consider the scenario where the L signals share the
same frequency offset fol = fo. If they have different fre-
quency offsets, then the algorithms that are presented in the
following sections could be used with the appropriate cyclic
frequencies. We assume we know L.

The conjugate cyclic cross-correlation of two signalsy(t),
z(t) at a cyclic frequency � and a lag � is defined by:

R�yz(� ) =< y(t)z(t + � )e�j2��t > (8)

We oversample the received signals and form the CCCF
between the sensor outputs from sensors u; v. At lag � and
� = 2fo, the CCCF is given by:

R�uv(� ) =
LX
l=1

R�sl(� )e
�j2�(u+v�2) l + R�n(� ) (9)

Since R�n(� ) = 0 for � 6= 0, we can write:

R�uv(� ) =
LX
l=1

R�sl(� )e
�j2�(u+v�2) l (10)

In practice, we would only have a finite number of sam-
ples and R�uv(� ) has to be estimated from these samples:

R̂�uv(� ) =
1

N

N�1X
n=0

xu(n)xv(n+ � )e�j2��n (11)

Under assumption (A5), R̂�uv(� ) converges in the mean
square sense:

R�uv(� ) = lim
N!1

EfR̂�uv(� )g (12)

and [R̂�uv(� ) �R�uv(� )] is asymptotically complex normal.
Hence we can write at a lag � :

R̂�uv(� ) =
LX
l=1

R�sl(� )e
�j2�(u+v�2) l + e(� ) (13)

where e(� ) is the complex Gaussian estimation error.
For a M sensor array, (u + v � 2) 2 f0; ::; 2M � 2g.

Consideringappropriate combinations of the sensor outputs,
such that (u+ v� 2) = 0; ::; 2M � 2 is in increasing order,
and stacking them, we get the following structure:

ruv(� ) = B(�)rs(� ) + e(� ) (14)

where

ruv(� ) = [R̂�
1;1(� ); ::; R̂

�
M;M(� )]

T
(15)

B(�) = [b(�1); ::;b(�L)] (16)

b(�l) = [1; e�j2� l; ::; e�j2�(2M�2) l)]T

rs(� ) = [R�
s1
(� ); ::;R�

sL
(� )]T (17)

This is similar to the time domain model (1), but now the
matrixB(�) is (2M�1)�L and thus we can estimate L <
(2M�1) DOAs by utilising the CCCF of the sensor outputs
and using a Bayesian approach.

It is also possible to consider multiple lags instead of just
one lag. Multiple lags lead to improved performance than
using just one lag at the cost of increased computation. Mul-
tiple lags were also used in [6] to improve the performance
of the cyclic-MUSIC method. Stacking the CCCF correspond-
ing to multiple lags we obtain:

d = G(�)h+ e (18)

where

d = [ruv(0); ::; ruv(�� 1)]T (19)

h = [rs(0); ::; rs(� � 1)]T (20)

G(�) = B(�)
 I��� (21)

e � N(0;�) (22)



4. DIRECTION ESTIMATION

Since e is complex Gaussian we can write the likelihood as:

p(djh;�;�; I) =

(2�)�N=2j�j�1=2 exp[�
1

2
(d�Gh)0��1(d�Gh)]

(23)

where � is the covariance matrix.
We assume � = �2I for computational simplicity and

thus the likelihood can be written as:

p(djh;�; �; I) =

(2��2)�N=2 exp[�
(d�Gh)0(d�Gh)

2�2
] (24)

Alternatively, we could whiten the conjugate cyclic cross-
correlation outputs and then use the whitened data.

Using Bayes’ theorem, with uniform priors for � and h
and Jeffrey’s prior for �, the posterior probability density is
given by:

p(h;�; �jd; I) =

(2��2)�N=2 exp[�
(d�Gh)0(d�Gh)

2�2
]
1

�
(25)

Integrating out the nuisance parameters, the marginal poste-
rior probability density is:

p(�jd; I) =

(d0d� d
0
G(G0G)�1G0d)

�(��L)=2

p
det(G0G)

(26)

The Maximum A Posteriori (MAP) estimate of� is obtained
as:

�̂ = max
�

[p(�jd; I)] (27)

This requires a multi-dimensional search of the posterior
probability density to find �. We use an iterative method,
where the L-dimensional search is split into a series of L
one-dimensional searches.

5. MULTI-PATH ENVIRONMENT

In the previous sections, we presented an algorithmfor DOA
estimation of multiple uncorrelated signals. In this section,
we consider multiple signals arriving at an antenna array via
a multi-path fading environment. We consider the narrow-
band, multi-path model and the mth sensor output is given

by:

xm(t) =

X
k

LX
l=1

QlX
q=1

a(�l;q )�l;q(t)bl(k)pl(t� kTl � �l;q)e
j2�fot

(28)

where Ql is the number of multi-paths corresponding to the
lth source signals,�l;q is the complex attenuation factor, which
is assumed to be constant over a symbol period and �l;q is the
constant delay associated with the qth path of the lth source.
Considering theM sensor outputs, we can represent the model
in the form as in (1) with:

A = [a(�1;1); ::; a(�L;Q)] (29)

a(�l;q) = [1; ::; e�j2�(M�1) l;q]T (30)

s(t) = [s1;1(t); ::; sL;QL
(t)] (31)

sl;q (t) =
X
k

�l;q (t)bl(k)pl(t � kTl � �q;l)e
j2�fot

As before, utilising the CCCF between sensor outputs
and considering appropriate combinations of the sensor out-
puts, such that (u + v � 2) = 0; ::; 2M � 2 and stacking
them in increasing order, we obtain a conjugate cyclic cross-
correlation model representation of the problem similar to
(14):

ruv(� ) = B(�)rs(� ) + e(� ) (32)

But, now the elements of rs(� ) will contain auto-correlation
terms as well as cross-correlation terms due to the correla-
tion between the multi-path signals:

rs(� ) =

0
BB@

PQ1

q=1 < s1;1(t)s1;q(t+ � )e�j2��t >

::
::PQL

q=1< sL;QL
(t)sL;q(t+ � )e�j2��t >

1
CCA

(33)

The DOAs of the multi-paths of all the signals of interest
can be estimated using an approach similar to that presented
in the previous section if the following condition is satisfied:

LX
l=1

Ql < 2M � 1 (34)

i.e., the total number of multi-pathsshould be less than (2M�
1).

6. SIMULATIONS

The simulations in this section were carried out for multiple
BPSK signals with raised-cosine pulse shaping arriving at a



3-element antenna array with half wavelength spacing of the
sensors. We used an oversampling factor of 4 and 30 lags.

In the first experiment, we considered 4 SOIs of symbol
rate 1=T with the same frequency offset fo = 0:3=T , and an
interfering BPSK signal with the same symbol rate but dif-
ferent frequency offset, in an additive Gaussian noise envi-
ronment with noise variance 0.1. We processed 500 symbols
and obtained the DOAs of the four signals. The results of 20
trials are presented in the table below.

True (deg) Mean (deg) std (deg)
20 20.2840 0.7735
40 39.4394 0.7577
55 55.7169 0.7782
60 60.8746 0.8080

In the second experiment, we considered a multi-path sce-
nario with 2 SOIs of symbol rate 1=T and frequency offset
fo = 0:3=T arriving at the array via two multi-paths, in the
presence of an interfering BPSK with the same symbol rate
but different frequency offset. The multi-paths were mod-
elled as Rayleigh fading and the additive noise had a vari-
ance of 1. The results of 20 trials, with a processing block
of 500 symbols, are presented in the table below. The first
two DOAs correspond to one signal and the other two to the
second signal.

True (deg) Mean (deg) std (deg)
20 19.7697 0.8345
40 40.4104 0.7599
55 55.4800 1.0013
60 60.7242 0.9680

In the third experiment, we considered 2 SOIs of symbol
rate 1=T and frequency offets fo = 1=T , and 2 interfering
BPSKs with the same symbol rate but different frequency
offsets, and analysed the effect of the length of the process-
ing block and the noise variance on the performance of the
algorithm. The results are presented in Figure 1 (for the two
DOAs). As expected, due to the additive noise suppression
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Figure 1: Effect of Noise and Number of Symbols (’-’ : SOI
1, ’- -’ : SOI 2)

property the performance is less affected by the noise vari-
ance; however, as more symbols become available, the esti-
mation error is reduced leading to better performance.

7. CONCLUSIONS

We have presented a direction estimation algorithm for mul-
tiple signals arriving at an antenna array. The algorithm is
based on conjugate cyclic cross-correlations between the sen-
sor outputs and the DOAs are estimated using a Bayesian
framework. We have shown that it is possible to estimate
the DOAs using only second order statistics and an uniform
linear array, even when there are more signals than sensors.
The algorithm is insensitive to any additive noise as long as
it is wide-sense stationary, and does not require any training
sequence. It is also possible to estimate the DOAs in a multi-
path fading environment under some conditions about the
total number of multi-paths. The drawback is the need for a
multi-dimensional optimisation. Although, in this paper we
used an iterative approach with a series of one-dimensional
optimisations, it is sub-optimal. Recently, Markov chain Monte
Carlo (MCMC) approaches are being used for parameter es-
timation in a Bayesian framework and MCMC techniques
could be used to improve the performance of the algorithms
presented here.
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