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ABSTRACT

We consider the problem of estimating the directions of
arrival of multiplecommunication signalsarriving at an uni-
formlinear array. By consideringthe conjugatecyclic cross-
correlationsof the sensor outputsand using aBayesian frame-
work, we propose a direction finding algorithm that allows
usto estimate thedirectionsof arrival for amore signalsthan
sensors scenario. The agorithm does not need any training
sequence and only requiresa priori knowledge of the cyclic
frequencies and the number of sources. It isaso possibleto
estimate the directions of arriva in a multi-path fading en-
vironment under certain conditions.

1. INTRODUCTION

Inthelast few years, dueto the advances in mobile commu-
nications and the limitation of the avail able spectrum, there
has been an interest in incorporating knowledge of the di-
rections of the signals to enhance the desired signd in the
presence of interferers. The objective of directionfinding is
the estimation of the directions of arrival (DOAS) of signals
of interest (SOIs) at the sensor array. Various algorithms,
mainly subspace based methods, such as MUSIC and ES-
PRIT, have been proposed for the estimation of the DOAS.

Communication signals are cyclostationary due to peri-
odicity corresponding to their pulserates or carrier frequen-
cies. Compared with conventiona correlation based meth-
ods, agorithmsthat exploit this cyclostationarity yield bet-
ter parameter estimatesin the presence of interferersthat do
not exhibit the same cyclic features. The cyclic-selectivity
property alows the cyclostationary algorithms to discrimi-
nate in favour of the signals of interest in the presence of
interfering signals. Cyclic direction finding methods have
been proposed, that incorporate the cyclostationary charac-
teristictoimprovetheperformance. A cyclic-MUSIC method
was proposed in[1, 6] and aleast-squares method based on
aLP model of the sensor outputswas presented in [5].

In this paper, we propose a direction finding agorithm
based on the conjugate cyclic cross-correlation function of

the sensor outputs. By considering the estimation error of
thesampl e conjugatecyclic cross-correlation function (CCCF)
and by using a Bayesian estimation criterion, we are able to
obtainthe DOAsof thesignals. The DOASs can be estimated
even when there are more signals than sensors. Cyclic al-
gorithms based on cyclic-MUSIC were presented in [4] us-
ing cyclic cumulants, and in [2] using minimum-redundancy
linear arrays for amore signal sthan sensors scenario. Inthis
paper, we show that by using only second order statisticsand
an uniformlinear array we can estimate the DOAs of signals
inaBayesian framework. Theagorithm does not depend on
the noise distribution as long as the noise is wide-sense sta
tionary. The algorithm does not use any training data and
only requires information about the cyclic frequencies. Itis
also possibleto estimatethe DOAsinamulti-path fading en-
vironment under some conditions.

2. PROBLEM STATEMENT

We consider the narrow-band signal model of L signalsim-
pinging on an array of M sensors:

x(t) = A(©)s(t) +n(t) @
where

x(t) = [x1(t),..,xm(t)]T aretheobservationg2)
s(t) = [s1(t),..,sL(t)]” arethesignds 3
n(t) = [ng(t),.,np(t)]” isthenoisevector (4)
A(©) = la(1),..,a(fL)] (5)

The steering vector a(6;) is:
a(0) = [lLe v emi2nM=LunT (g

wo= Ssnn)

where X isthewavel ength of thesignals, d istheinter-sensor
spacing and 6; is the direction of arrival (DOA) of the /"
signal.



The sourcesignal sare second order cyclostationary; here
we consider them to be digitally modulated communication
signals:
it — kT — q)e]z”f"’t (7
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where Ay, ¢;, f,; arerespectively the constant amplitude, the
delay and the frequency offset of the (** signal and p;(¢) is
the shaping pulse.

Our aimistoestimatethedirectionsof arrival © = {6, }1,
from N samples of x(t). We make the following assump-
tions:

(A1) The source signals are zero mean, statistically inde-
pendent, second order cyclostationary processes.

(A2) Thesymbolsb; (k) arezero-mean, stationary, uncorre-
lated and uniformly distributed over afinite a phabet.

(A3) Theadditivenoisen(t) isawide-sensestationary pro-
Cess.

(A4) Thesourcesignalsandthenoiseare statistically inde-
pendent.

(A5) x(t) satisfy the mixing condition.

3. CYCLIC CORRELATION MODEL

Our agorithmis based on the CCCF of the sensor outputs.
Most signals(e.g : BPSK, MSK, CPFSK) are conjugate cy-
clostationary at twice their frequency offset (or carrier fre-
guency). Inthispaper, we assume that thisfrequency, which
isrelated to the cyclic frequency « by o« = 2f,;, isknown
or has been estimated. The frequency offsets of the multiple
signalscan be estimated from the samples of one of the sen-
sor outputsusing the blind frequency offset estimation algo-
rithm we presented in [3].

We consider the scenario where the L signas share the
same frequency offset f,; = f,. If they have different fre-
guency offsets, then the algorithmsthat are presented in the
following sections could be used with the appropriate cyclic
frequencies. We assume we know L.

The conjugatecyclic cross-correl ation of twosignalsy(t),
z(t) at acyclic frequency « and alag T is defined by:

R;Z(T) =< yH)z(t + T)e_ﬂ”” > (8)

We oversample the received signals and form the CCCF
between the sensor outputs from sensors u, v. At lag = and
a = 2f,,the CCCFisgiven by:

L
Riy(r) = 3 R (r)e 2T =0 Ri(r) - (9)
=1

Since R (r) = 0 for o # 0, we can write:

= R

In practice, we would only have afinite number of sam-
plesand RS, () hasto be estimated from these samples:

e—jZﬂ'(u+v—2)wl (10)

N-1

Z n)ey(n + 7e —j2man (12)

Under assumption (A5), R2, () converges in the mean

square sense:
R, (r) = lim E{R},(7)} (12)
and [R2, (1) — R2, ()] isasymptotically complex normal.

Hence we can writeat alag r:

L
= Z R?I(T)e_ﬂ”(“'l'”_z)w’ +e(r) (13)
=1
wheree(7) isthe complex Gaussian estimation error.
For a M sensor array, (v + v — 2) € {0,..,2M — 2}.

Considering appropriate combinationsof the sensor outpults,
suchthat (u4 v —2) =0, .., 2M — 2 isinincreasing order,
and stacking them, we get the following structure;

ruv(7) = B(O)rs(7) + e(7) (14)
where
rav(r) = [R§4(7), - Rigu(r)] (15)
B(©) = [b(61),..b(0L)] (16)
(91) — [1 —]2771111 " —jZW(ZM—Z)wl)]T
re(r) = [RE(7), .. RL(D] (17)

Thisis similar to the time domain modd (1), but now the
matrix B(©) is(2M —1) x L andthuswe can estimate L <
(2M —1) DOAsby utilisingthe CCCF of the sensor outputs
and using a Bayesian approach.

Itisalso possibleto consider multiplelagsinstead of just
onelag. Multiplelags lead to improved performance than
using just onelag at thecost of increased computation. Mul-
tiple lagswere also used in [6] to improve the performance
of thecyclic-MUSIC method. Stackingthe CCCF correspond-
ing to multiplelags we obtain:

d=G(©®)h+e (18)
where
d = [ra(0), .t =17 (19
h = [rs(0),..,v(T — 1) (20)
G(®) = B(©)®Iryr (21)
e ~ N(O,%) (22)



4. DIRECTION ESTIMATION
Since e iscomplex Gaussian we can writethe likelihood as:

p(dh,©,2,1)=

'(d - Gh)]
(23)

(277)_N/2|E|_1/Zexp[—%(d — Gh)'x"

where X isthe covariance matrix.
We assume ¥ = I for computational simplicity and
thus the likelihood can be written as:

p(dh,©,0,1) =
(d — GhY(d — Gh)
202

(271'02)_N/2 exp[— ] (24)
Alternatively, we could whiten the conjugate cyclic cross-
correlation outputs and then use the whitened data.

Using Bayes' theorem, with uniform priorsfor © and h
and Jeffrey’s prior for o, the posterior probability density is
given by:

p(h,0,0|d, I)=

d- GhQ);(zd - Gh), % 5

(271'02)_N/2 exp[— (

I ntegrating out the nuisance parameters, the margina poste-
rior probability density is:
p(Old, I) =
(dd - d'G(G'G)"1G'd)”
det(G'G)

(0-L)/2

(26)

The Maximum A Posteriori (MAP) estimate of © isobtained
as:

6= max[p(©|d, )] 27)

Thisrequiresamulti-dimensional search of the posterior
probability density to find ©®. We use an iterative method,
where the L-dimensional search is split into a series of L
one-dimensional searches.

5. MULTI-PATH ENVIRONMENT

Inthe previous sections, we presented an algorithmfor DOA
estimation of multiple uncorrelated signals. In this section,
we consider multiplesignalsarriving at an antennaarray via
a multi-path fading environment. We consider the narrow-
band, multi-path model and the m'” sensor output is given

by:

Tm(t) =
Q

L
2.2 2 albig)Biy(t)
k

=1 ¢=1

Yor(k)pi(t — kT7 — qu)eﬂ”f"t

(28)

where (); isthe number of multi-paths corresponding to the
['" sourcesignals, 3 , isthecomplex attenuation factor, which
isassumed to be constant over asymbol periodand ¢; , isthe
constant delay associated with the ¢*”* path of the ! source.
Consideringthe M sensor outputs, we can represent the model
intheform asin (1) with:

A [a(f1,1), ., a(fL,0)] (29)

a(hg) = [1,., —WM—%]T (30)

s(t) = [s1a(t),..,sL QL(t)] (31)
s14(t) = k)pi(t — kT — €, l)eJZWf"

Zﬁl,q
k

As before, utilising the CCCF between sensor outputs
and considering appropriate combinationsof the sensor out-
puts, such that (v + v — 2) = 0,..,2M — 2 and stacking
theminincreasing order, we obtain a conjugate cyclic cross-
correlation model representation of the problem similar to
(14):

ruv(7) = B(O)rs(7) + e(7) (32)
But, now the elements of r¢(7) will contain auto-correlation
terms as well as cross-correlation terms due to the correla
tion between the multi-path signds:
Z 1< s11(t)s1,q(t + 7')e_j27TCYt >
rs(T) = .
Yo < s1,qu (6)ST gt + T)ei27e >
(33)

The DOAsof themulti-pathsof all thesignalsof interest
can be estimated using an approach similar to that presented
inthe previoussection if thefollowing conditionis satisfied:

L
Q<M -1 (34)
=1
i.e., thetotal number of multi-pathsshould belessthan (2 M —
1).
6. SSIMULATIONS

The simulationsin this section were carried out for multiple
BPSK signalswith rai sed-cosine pulse shaping arriving a a



3-edlement antennaarray with half wavel ength spacing of the
sensors. We used an oversampling factor of 4 and 30 lags.

In thefirst experiment, we considered 4 SOIs of symbol
rate 1 /7T with the samefrequency offset f, = 0.3/7,andan
interfering BPSK signal with the same symbol rate but dif-
ferent frequency offset, in an additive Gaussian noise envi-
ronment with noisevariance 0.1. We processed 500 symbols
and obtained the DOAs of thefour signals. Theresultsof 20
trialsare presented in the table below.

True(deg) | Mean (deg) | std (deg)
20 20.2840 0.7735
40 39.4394 0.7577
55 55.7169 0.7782
60 60.8746 0.8080

Inthesecond experiment, we considered amulti-path sce-
nario with 2 SOIs of symbol rate 1/7" and frequency offset
Jo = 0.3/T arriving at the array viatwo multi-paths, in the
presence of an interfering BPSK with the same symbol rate
but different frequency offset. The multi-paths were mod-
elled as Rayleigh fading and the additive noise had a vari-
ance of 1. The results of 20 trials, with a processing block
of 500 symbols, are presented in the table below. The first
two DOAs correspond to one signal and the other twoto the
second signdl.

True(deg) | Mean (deg) | std (deg)
20 19.7697 0.8345
40 40.4104 0.7599
55 55.4800 1.0013
60 60.7242 0.9680

In thethird experiment, we considered 2 SOIs of symbol
rate 1/T and frequency offets f, = 1/T, and 2 interfering
BPSK's with the same symbol rate but different frequency
offsets, and anaysed the effect of the length of the process-
ing block and the noise variance on the performance of the
algorithm. Theresultsare presented in Figure 1 (for thetwo
DOAS). As expected, due to the additive noise suppression
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Figure 1: Effect of Noiseand Number of Symbols (-’ : SOI
1,’--:80l12)

property the performance is less affected by the noise vari-
ance; however, as more symbols become available, the esti-
mation error is reduced leading to better performance.

7. CONCLUSIONS

We have presented a direction estimation a gorithm for mul-

tiple signals arriving a an antenna array. The agorithmis
based on conjugatecyclic cross-correl ationsbetween the sen-
sor outputs and the DOAS are estimated using a Bayesian

framework. We have shown that it is possible to estimate
the DOAs using only second order statisticsand an uniform
linear array, even when there are more signals than sensors.

The agorithmisinsensitiveto any additive noise aslong as
it iswide-sense stationary, and does not require any training

sequence. Itisaso possibleto estimatethe DOAsinamulti-

path fading environment under some conditions about the
total number of multi-paths. The drawback isthe need for a
multi-dimensional optimisation. Although, in this paper we
used an iterative approach with a series of one-dimensional

optimisations,itissub-optimal. Recently, Markov chain Monte
Carlo (MCMC) approaches are being used for parameter es-
timation in a Bayesian framework and MCMC techniques
could be used to improve the performance of the algorithms
presented here,
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