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ABSTRACT

This paper presents a novel approach based on time-frequency
distributions (TFDs) for separating signals received by a
multiple antenna array. This approach provides a significant
improvement in performance over the recently introduced
spatial time-frequency distributions, specifically for signals
with close time-frequency signatures.  In this approach, spatial
averaging of the time-frequency distributions of the sensor data
is performed to eliminate the interactions of the sources signals
in the time-frequency domain, and as such restore the realness
property and the diagonal structure of the source TFDs, which
are necessary for source separation. It is shown that the
proposed approach yields improved performance over both
cases of no spatial averaging and averaging using time-
frequency smoothing kernels.

1. INTRODUCTION
In this paper, we introduce a new technique for source
separation based on time-frequency distribution methods. The
sources have different time-frequency signatures and
instantaneously mixed at the array sensors.  The number of
sensors is assumed to be equal to or greater than twice the
number of sources. The time-frequency distributions (TFDs) of
the data across the array are computed and used to construct
spatial time-frequency distribution matrices (STFDs). By
forcing the hermition Toeplitz structure of the STFDs and
perform spatial symmetric averaging over two parts of the array,
we achieve significant improvement of source separation over
the case where no spatial averaging is performed.

    Recently, time-frequency distributions have been applied to
direction finding and blind source separation problems in array
processing. The spatial time-frequency distributions are
introduced in [1] and represented by a spatial matrix whose
elements are the time-frequency distributions of the data across
the multi-sensor array.  The successful application of STFDs to
separating sources with identical spectra, but different time-
frequency signatures, is shown in [2]. In this application, STFD
matrices computed at different t-f points are incorporated into a
joint-diagnalization technique based on generalized Jacobi
transform to estimate the mixing, or array manifold, matrix.
This matrix is then used to estimate the sources’ signals up to a
multiplicative complex scalar and the order of the sources.  The
general theory of solving blind source seperation problems using
spatial arbitrary joint variable distributions, including those of
time and frequency, is given in [3].  In [4], the two arbitrary
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variables are chosen as the time-lag and frequency-lag, and the
source separation was performed using spatial ambiguity
functions. The use of STFDs as an eigenstructure-based
approach for direction finding is given in [5], where the Time-
Frequency MUSIC technique is proposed to estimate the signal
and noise subspaces.

The importance of joint-diagonalization (JD) in the STFD
context is that the diagonal structure, the distinct eigenvalues,
and the full rank properties of the signal TFD matrix, necessary
for source separation, can be easily violated when operating
with a single t-f point. The cross time-frequency distributions of
the source signals yield non-zero complex values at the off-
diagonal elements, rendering the estimation of the mixing
matrix difficult, or even impossible. Also, the noise contribution
to all matrix elements at low SNR cannot be ignored. As the
interactions of the source signals vary over the time-frequency
plane, the incorporation of several STFD matrices at different t-f
points into JD enhances diagonalization and leads to a
successful separation of signal arrivals. It is noted that the
primary motivation of using smoothing kernels and resorting to
other variables than time and frequency, specifically the
ambiguity-domain variables, is to allow the selection of joint-
variable points where the interactions of the source signals are
insignificant.

The fundamental role of the proposed technique of symmetric
spatial averaging of STFDs is the effective elimination of the
signals’ intermodulations. It effectively restores the diagonal
structure and realness property of the signal TFD matrix.
Symmetric spatial averaging is a simple, well-known technique
in conventional array processing [6]. It uses additional array
sensors to reduce cross-correlation in coherent and correlated
signal environments, and thereby permits proper angle-of-arrival
estimations and source separations. It is shown that adopting
this technique in the underlying TFD-based source separation
JD problem gives robustness to t-f point selections and leads to
improved performance over other TFD-based techniques,
specifically for sources whose time-frequency signatures are not
very distinct.

2. SPATIAL TIME-FREQUENCY
DISTRIBUTIONS

The data vector for N-element array is given by

     x(t) = y(t)+n(t) = As(t)+n(t).     (1)

In vector forms, x(t)=[x0(t), …, xN-1(t)]T is a noisy instantaneous
linear mixture of the source signals s(t)=[s1(t), …, sn(t)]

T and
n(t) is the additive noise. The mixing matrix A is the transfer
function between the sources and the array sensors.



    The discrete-time form of Cohen’s class of TFD for signal
x(t) is given by [7]
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where t and f represent the time index and the frequency index,
respectively. The kernel I(m, l) characterizes the TFD and is a
function of both the time and lag variables. The cross-TFD of
two signals xi  (t) and xj (t) is defined by
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    The spatial time-frequency distribution (STFD) incorporates
both equations (2) and (3), and is defined in [2] by,
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where > @ ),(),( , ftDft
ji xxji  xxD , for i, j=0, …, N-1, �  denotes

the Hadamard product, and > @ ),(),( ,, lmlm jiji I ��  is the time-

frequency kernel associated with the pair of the sensor data xi(t)
and xj (t). Under the linear data model of Eq. (1) and assuming
noise-free environment, the STFD matrix takes the following
simple structure

    Hftft AADD ssxx ),(),(      (5)

where Dss(t,f) is the signal TFD matrix whose entries are the
auto- and cross-TFDs of the sources. Eq. (5) is similar to that
commonly used in conventional blind source separation and
direction-of-arrival (DOA) estimation problems [8,9], relating
the signal correlation matrix to the data spatial correlation
matrix. If Dss(t,f) is a full-rank matrix, the two subspaces
spanned by the principle eigenvectors of Dxx(t,f) and the
columns of A become identical. In this case, directional finding
techniques based on eigenstructures can be applied. If Dss(t,f) is
diagonal, i.e., the signal cross-TFDs at the time-frequency point
(t,f) are zeros, the mixture matrix and the signal waveform can
be recovered using blind source separation methods [1,2]. In
these methods, in order to avoid potential problems associated
with using a single STFD, STFDs at different (t,f) points are
incorporated into a joint-diagonalization scheme. Although JD
of the STFDs is effective in most cases, signals with close time-
frequency signatures are still difficult to separate. As shown
below, spatial averaging can be used to facilitate signal
separation.

3. SPATIAL AVERAGING TIME-
FREQUENCY DISTRIBUTIONS

    Symmetric spatial averaging method was proposed by Pillai
[6] to restore the full-rank property of the signal covariance
matrix in the presence of coherent signals. In this section, we
extend the spatial averaging method to TFD analysis, and
propose the signal separation method by joint diagonalization
(JD) based on spatial averaging TFDs.

    Without loss of generality, we consider M=2, i.e., only two
sources, s1(t) and s2(t). The result can be easily extended to

multiple sources. By ignoring the effect of noise, the received
signal at i-th array sensor is represented as
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where Zk=2SsinIk/O �k  ���� is the spatial radian frequency, O is
the RF wavelength, and di is the distance between 0-th and i-th
array sensors. We assume the array is equi-spaced linear array.
The cross-TFD of xi(t) and xj(t) is
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Since the cross-terms (second term in each bracket in (7)) are
generally complex, it is clear that the TFD matrix Dxx(t,f ) will
not provide proper phase information for recovering the DOA of
the arrived signals when cross-terms are present. However, such
phase information can be restored by using spatial averaging
methods. The spatial averaging of TFD allows the signal
separation even when the TFDs of multiple signals have very
similar shapes and are highly overlapping.

    Let the number of array sensors be 2N-1with the array center
is the zeroth sensor, as shown in Fig.1. The TFD of x0(t) and
xi(t), i= 0, 1, 2, …, N-1, is
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where we note d0=0. Similarly, the TFD of x0(t) and x-i(t) is
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The spatial averaging of (8) and (9) is given by
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Since the terms in the brackets are all real, the TFD in (10)
correctly represents the phase information caused by the
propagation delay between array sensors, even when the cross-
terms are complex. The matrix formed from the TFDs (10)
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is hermitian and Toeplitz. It is referred to as the spatial
averaging TFD (SATFD) matrix. In the noise-free environment,
the SATFD matrix can be expressed as

    Hft ADAD ssxx
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are the equivalent TFD of the signal vectors. Note that ),(
~

ftssD

no longer expresses the actual TFD. Clearly, (12) has the same

format as (5), and ),(
~

ftssD  here is diagonal even when the

cross-terms of the TFD of the signals are present. Therefore, the
spatial averaging method will ensure the validity of the TFD-
based signal separation in the presence of cross-TFD.

4. SIMULATION RESULTS

Equi-spaced 5-element linear array is used for simulation with
the interelement spacing 0.5O. When spatial averaging method
is used, two sub-arrays are formed, each with 3 elements. Two
sources of chirp signals
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are used, where P and Z are chosen to be 0.008S and 0.02S,
respectively. The DOAs of the two signals are assumed 30o and
60o from the broadside direction. No noise is considered here.

Fig.2(a) shows the Wigner-Ville distribution of each source
signal, and Fig.2(b) shows the respective distributions after
signal separation. It is clear that the array fails to separate s1(t)
and s2(t).

In the TFD-based signal separation method, applied in Fig. 2,
three points (t, f) are used for joint diagonalization at t = 32, 64,
and 96. The frequency f is chosen so that the TFD at the first
array sensor is the largest for a given t.

To show the effect of using a smoothing kernel, similar
simulation is performed with the Choi-Williams kernel [10]
with V = 0.1.  The result is shown in Fig.3. A rectangular
window with 31 samples in both time and frequency scale is
used. Since the two signals are closely spaced in the t-f domain,
the cross-terms reduction furnished by the Choi-Williams kernel
is limited, and again the array fails to separate the two signals.

    Fig.4 shows the separated signals under the same conditions
when the proposed spatial averaging method is applied. The
signals are perfectly separated, except for their order.

5. CONCLUSIONS
Symmetric averaging of spatial time-frequency distributions has
been introduced. The averaging improves the performance of
source separation using joint-diagonalization techniques.  It
amounts to forming a spatial hermition Toeplitze matrix using
the time-frequency distributions of the data across one half of
the array. This matrix is then added to the spatial matrix
corresponding to the other half of the array. The effect of this
averaging is to remove interaction between the source signals in
the time-frequency domain. Joint digonalization (JD) using a

generalization of Jacobi transform is then applied to estimate the
mixing matrix. By reducing the interaction of the source signals,
the JD algorithm yields improved performance over the case
when no averaging is performed.  The paper presented an
example of separating two chirps signals whose time-frequency
signatures are slightly different. The proposed approach has
successfully separated the two signatures, while other non-
averaging methods fail.
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Fig.1 Array configuration for spatial averaging



(a) TFD of the sources
 (b) TFD of the separated signals

Fig.2  TFD of the sources and the separated signals using Wigner-Ville distribution

(a) TFD of the sources (b) TFD of the separated signals

Fig.3  TFD of the sources and the separated signals using Choi-Williams distribution

(a) Wigner-Ville distribution (b) Choi-Williams distribution

Fig.4  Separated signals with spatial averaging


