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ABSTRACT

Texture analysis is an important problem in image processing be-
cause it conditions the quality of image segmentation and interpre-
tation. We propose in this communication a texture model which
is invariant by rotation and whose parameters allow to character-
ize at the same time the type of texture and its tonal primitive. The
originality of the model proposed lies in the use of the Wold de-
composition to modelize the 1D normalized autocovariance. This
function is computed from the 2D normalized autocovariance of
a texture. Finally, parameters of the model are estimated by us-
ing a genetic algorithm. Experimental results on textures from the
Brodatz album and synthetic textures show a modeling error lower
than 0:06.

1. INTRODUCTION

Natural image processing put in obviousness the necessity to build
reliable models for image analysis taking to account some textured
regions for a posterior interpretation. Nevertheless, the definition
of texture remains unclear in the literature [7], [9]. The texture is
usually defined following either two approaches:

� descriptive approach : a texture is described through several
characteristic properties :

– “A texture is a region of an image, for which a win-
dow with minimals dimensions can be defined, such
that the visual perception of an observation inside the
window, is the same for all possible translation of the
window inside the region”[9],

– the notion of texture is only valid for a set of resolu-
tions [8].

� constructive approach : according to Haralick [4], a tex-
ture can be decomposed following two dimensions. The
first concerns the description of the tonal primitives that
compose it and the second defines the interactions between
these tonal properties. He distinguishes three types of tex-
ture :

– structural or macroscopic textures: these textures have
a regular spatial structure generated by the repetition
of a primitive,

– random or microscopic textures: the texture is con-
sidered as the realization of a 2D stochastic process
where it is difficult to define an elementary primitive,

– hybrid textures : the interactions between the tonal
primitives is random.

We opt for this last definition. However, the notion of a tex-
ture’s tonal primitive remains vague. We propose here to precise
the definition of the texture tonal primitive as :
“The tonal primitive of a texture is the smallest spatial structure in
a texture whose shape is governed by the same probability density
within a texture”.

These two approaches have led to the elaboration of the two
main techniques of texture analysis. The first consists in analyz-
ing a texture using attributes of the grey level co-occurrence or the
run-length matrix [4]. This characterization of textures does not
always give a complete description of the texture and necessitates
a great number of parameters. The second approache modelizes
the texture as the realization of a 2D random field [3], [2]. Hy-
pothesis of utilization of these models limit their applications to
certain types of textures.

To avoid these drawbacks, we propose in this paper to analyze
a texture from its normalized autocovariance function. The Wold
decomposition of the autocovariance function allows to modelize
efficiently the different textures. Moreover, parameters of the model
can be used to identify textures by considering their tonal primi-
tive (microscopic,macroscopic) and their deterministic or stochas-
tic characteristic. This model of homogeneous texture is also in-
avariant by rotation. Parameters of the model are estimated by
using a genetic algorithm.

2. DEVELOPPED METHOD

In this section, we propose a model of the 1D normalized autoco-
variance function by using the Wold decomposition. We compute
this function from the 2D normalized autocovariance of the tex-
ture. Finally, we present the method used to estimate the parame-
ters of the model.

2.1. Wold decomposition of the 1D normalized autocovariance

The Wold decomposition of a homogeneous random field is the
three superposition of mutually orthogonal components : a purely-
indeterministic field, a generalized evanescentfield and a harmonic
field [8]. We propose to modelize the 1D normalized autocorrela-
tion by using the Wold decomposition.This function is often used
to evaluate spatial dependencies between some pairs of pixels. In



the case of a centered image, this function is defined as the auto-
covariance

A 1D harmonic field I1 can be modelized by a sum of p har-
monics :

I1(r) =
X
p

psin(2�fpr + �p)

where p is the p th harmonic component of the field I1, fp
the associated frequency and �p the phase.

The autocovariance of a harmonic field I1 is given by :

FACI1(r) = 20 + 2
X
p>0

2pcos(2�fpr + �p)

Similarly, the autocovariance of a purely-indeterministic field
I2 is a function that can be modelized as follows [3] :

FACI2(r) = e��r

A 1D generalized evanescent field I3 can be modelized as :

I3(r) = s(r):
X
p

psin(fpr + �p)

where s is a 1D random process.

The associated autocovariance function can be defined as :

FACI3(r) = e��1r + e��2r
X
p

pcos(2�fpr + �p)

The autocovariance of a generalized evanescent field is char-
acterized by a fast decrease for small displacement distances and
by oscillations of lessened amplitude.

Thus, the 1D autocovariance function of a random field I can
be modelized as following :

^FACI(r) = e��r + :e��rcos(2�fr+ �) + � + �(r) (1)

The term �(r) corresponds to the modeling error of the nor-
malized autocovariance function.

In the case of a purely-indeterministic field, the second term
of this expression has to be insignificant (that is realized from a
value of � very small and a high value of � or  small). In the
harmonic case, the coefficient � has to be close to 0. Finally, the
evanescent case is characterized by an average value of � > 0 for
modelize amortized oscillations present in the normalized autoco-
variance function.

The size of the texture tonal primitive can be estimated from
the parameters of the model. In the harmonic case, the size of the
texture tonal primitive is approached by the period 1=f . In others
cases,M the tonal primitive size is approached by considering the
distance for which F (M) becomes insignificant.

2.2. Computation of the 1D normalized autocovariance of a
texture

We present a method to compute the 1D normalized autocovari-
ance of a texture from its 2D normalized autocovariance function.
The resulting function is called F and is computed as :

F (r) =
1

�r

X
(i;j)2Ĉr

~FAC(i; j) 8r > 0

where Ĉr = f(i; j)=i > 0;
p
i2 + j2 = rg is the set of

points on the semi-circle of radius r. Let be m =
p
i2 + j2 ,

~FAC is defined as :

~FAC(i; j) =

8><
>:

FAC(i; j) if m 2 N

Pv
k=1 d(s

(k);m)I(s(k))
P

v
k=1

d(s(k);m)
otherwise

The first term is the 2D normalized autocovariance function
defined as :

FAC(i; j) =
1=N�

P
s=(k;l)2R�

I(s)I(k+ i; l + j)

1=N
P

k;l I
2(k; l)

where N� and R� are respectively the number of points and
the region on which the product I(s)I(k+ i; l + j) is computed.
N is the total number of pixels, I is the luminance function (its
mean is equal to zero), i and j are the horizontal and vertical dis-
placement.

The second term of this expression corresponds to the inter-
polation of the point m on the circle Ĉr and the term d(s(i);m)
corresponds to the Euclidean distance between two sites of the im-
age to analyze (see Figure 1). The value v defines the considered
number of neighbors in the interpolation phase.
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Figure 1: Interpolation of a point on Ĉr

Let F (r) be the average correlation of a pixel with others dis-
tant of r in all directions, this function is defined as an 1D auto-
correlation function. Indeed, it is easy to show that this function
is invariant by translation (the F function is computed from the
2D autocovariance which has this property). In addition, the F (r)
function allows a rotation invariant analysis of the considered tex-
ture. This property is obtained by taking into account correlations



in all directions.

The F function allows us to estimate the parameters of the
model of equation (1).

2.3. Model parameters estimation

The F function previously computed is analyzed as an 1D auto-
correlation function. Parameters of the model are estimated by
minimizing the following function :

RqX
i=1

(F (ri)� F̂ (ri))
2

where Rq is the maximal radius value of analysis and F̂ the
model of the function F .

So as to determine parameters minimizing this functional, we
used a genetic algorithm [6] (GAOT : Genetic Algorithm for Op-
timization Toolbox). This approach is particularly adapted to our
problem since the function to minimize is not convex (because of
the presence of a cosine in the model). Other approaches such
as conjugated gradient or simulated annealing would give in most
cases only local extrema [5].

Genetic algorithms determine solutions of a function by sim-
ulating the evolution of a population until only the most adapted
individuals survive. The choice of an important initial population
guarantees the convergence to a global minimum.The survivors are
individuals obtained by crossing over, mutation or selection of in-
dividuals of the previous generation.

3. EXPERIMENTAL RESULTS

We have tested this model on a representative texture database
from the Brodatz album [1] and synthetic textures composed of 64
images. We have computed the normalized autocovariance func-
tion for each texture of this database as well as the associated func-
tion r 7! F (r).

We give as illustration the result of the modeling (see Figure 4)
for some textures (see Figure 5). Our experimentations show the
stability of the model parameters for similar textures. The mod-
eling error for all textures in the database is lower than 0:06 (see
Table 1).

Nevertheless, the model that we propose allows to consider
only one harmonic component in the considered texture. When
this hypothesis is not verified, the period estimation is wrong.

The Figure 3 shows two examples of invariance by rotation
of the proposed model applied to two textures for four orienta-
tions (� = 0; �4 ;

�
2 ;

3�
4 ). The error commited due to orientation

(
PRq

i=1(F
0(ri) � F �(ri)) ; � = �

4 ;
�
2 ;

3�
4 ) in these two cases is

lower than 0:05.

4. CONCLUSION AND PERSPECTIVES

We have proposed a rotation invariant texture model. It has been
obtained from a Wold-like model of the 1D normalized autocovari-
ance. the Parameters of the model have been computed by using a

texture �  � T = 1
f

� � �

noise 3.21 0.02 0.25 7.73 48.71 0. 0.
sand 0.33 0.22 0.18 32.34 39.36 0. 0.
water 0.42 0.13 0.10 44.53 42.07 0.02 0.
bubles 0.22 0.16 0.25 13.34 33.30 0.01 0.01
chess 0.44 0.30 0.02 22.33 36.48 0. 0.06
canvas 0.82 0.17 0.09 8.59 36.36 0. 0.02

Table 1: Parameters of the model for different textures

genetic algorithm.

Experimental results show that the 1D normalized autocovari-
ance allows to analyze a texture. Moreover, the proposed model
provides a better discrimination of textures by considering their
types (deterministic, stochastic) and their tonal primitive (microso-
copic, macroscopic). These informations will facilitate subsequent
treatments particularly in image segmentation and interpretation.

Perspectives of this study concern the computation of the num-
ber of harmonic components of the texture. This model can also
be used in texture segmentation or in image retrivial.
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Figure 2: Two textures with 4 deifferent orientations
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Figure 3: Modeling results of previous textures for four orienta-
tions
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Figure 4: Texture samples grom the database
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Figure 5: texture modeling results (— : F (r), .. : ~F (r))


