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ABSTRACT

This paper proposes speaker normalized spectral sub-
band centroids (SSCs) as supplementary features in
noise environment speech recognition. SSCs are com-
puted as frequency centroids for each subband from
the power spectrum of the speech signal. Since the
conventional SSCs depend on formant frequencies of
a speaker, we introduce a speaker normalization tech-
nique into SSC computation to reduce the speaker vari-
ability. Experimental results on spontaneous speech
recognition show that the speaker normalized SSCs are
more useful as supplementary features for improving
the recognition performance than the conventional SSCs.

1. INTRODUCTION

All speech recognition systems include a signal pro-
cessing front-end that converts a speech waveform into
feature parameters. In real world applications, we of-
ten encounter situations in which mismatches between
training and testing conditions exist (e.g., noise, speaker,
or channel). In such cases, there is a dramatic degra-
dation in the recognition performance. Therefore, the
front-end is required to extract robust feature parame-
ters from the speech signal that are relatively insensi-
tive to these mismatches.

To this end, signi�cant e�orts have been made in
research to compensate condition mismatches [1][2][3].
These approaches, however, usually require a knowl-
edge or estimation of the properties of the current exist-
ing noise in advance (e.g., signal-to-noise ratio and/or
noise spectrum). Another approach to cope with con-
dition mismatches is to investigate robust features.

Recently, spectral subband centroids (SSCs) have
been proposed as such features [4]. SSCs are com-
puted as frequency centroids for each subband from
the power spectrum of the speech signal. They can
be obtained reliably even under noisy conditions, since
SSCs roughly capture spectral peaks (such as formants)
whose positions are almost unchanged in noisy environ-
ments.
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The e�ectiveness of SSCs is described in [4]. How-
ever, the task is very simple; speaker-dependent alpha-
bet recognition in a clean environment. From now on,
therefore, the e�ectiveness of SSCs has to be investi-
gated in noisy environments. Moreover, because we
consider that SSCs do not help very much in speaker-
independent tasks, i.e., from the fact SSCs are highly
dependent on formant peaks, in this paper, we incorpo-
rate a speaker normalization technique into SSC com-
putation to reduce the speaker variability.

In the following section, we introduce spectral sub-
band centroids. In Section 3, a method of combin-
ing SSCs with a speaker normalization technique is
described. Section 4 shows recognition results on a
Japanese spontaneous speech database in noisy envi-
ronments.

2. SPECTRAL SUBBAND CENTROIDS IN
A NOISY ENVIRONMENT

2.1. Spectral subband centroids [4]

Let us assume that the frequency band [0, Fs/2](Fs
is the sampling frequency) is divided into M disjoint
subbands and that the shape of each subband �lter is
rectangular. Let the lower and higher edges of the m-
th subband be lm and hm, respectively. Then, l1=0,
hM=Fs/2, and lm+1 = hm = m * Fs/(2*M), for m =
1; 2; : : : ;M � 1. The spectral subband centroid Cm for
the m-th spectral subband is de�ned as follows:

Cm =

Z hm

lm

fP(f)df

Z hm

lm

P (f )df

; (1)

where f is frequency and P (f ) is the power spectrum.
 is a constant controlling the dynamic range of the
power spectrum. By setting  < 1, the dynamic range
of the power spectrum can be reduced. The frequency
band can be divided uniformly on the Hertz (Hz) scale
or on the Mel (or Bark) scale. A smooth power spec-
trum (i.e., spectral envelope) can be used for the cen-
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Figure 1: SSCs obtained from the FFT power spectrum
of Japanese vowel /u/ (M = 8,  = 0:5). The subband
boundaries are shown by the vertical dotted lines, and
the centroids by the solid lines.

troid computation. In this paper, we compute SSCs
from a uniformly-divided unsmoothed (FFT) power spec-
trum on the Hz scale.

2.2. Analysis example

As an illustration, the FFT power spectrum for a
Japanese vowel /u/ sampled at 16 kHz for clean speech
are shown in Fig. 1. In this �gure, spectral subband
centroids with  = 0:5, which are computed by eight
uniformly-divided subbands (dotted lines), are shown
by the solid lines. We can see that several SSCs (e.g.,
C1, C2, and C3) are located around formant frequen-
cies. That SSCs roughly capture formant frequencies
in many cases has also been con�rmed on other data.

Figure 2 illustrates the e�ectiveness of SSCs as ro-
bust features in a noisy environment. Figure 2(a) shows
the distributions of the �rst and second order MFCCs
for Japanese vowels /a/ and /o/. Figure 2(b) shows
the distributions of the �rst and second order SSCs for
the same vowels. In both �gures, the dotted ovals indi-
cate the areas of � � 0:5�, where � is the mean and �
is the standard deviation, in a clean environment. The
solid ovals indicate the areas in a noisy environment
(SNR=10dB). We can see from these �gures that SSCs
can be stably obtained compared to MFCCs even when
the condition mismatches are observed.

3. SSC WITH A SPEAKER
NORMALIZATION TECHNIQUE

In the previous section, we showed that SSCs roughly
capture formant frequencies of spectra. Accordingly,
we can expect SSCs to provide useful information under
noisy conditions, since formant frequencies are not usu-
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Figure 2: Distributions for Japanese vowels /a/ and
/o/ for a single male speaker. The upper �gure
shows the distributions of the �rst and second order
MFCCs for these vowels. The lower �gure shows the
distributions of the �rst and second order SSCs for
the same vowels. <> and [ ] indicate the means in
clean and noisy (SNR=10dB) environments, respec-
tively. The solid ovals and the dotted ovals indicate
areas of � � 0:5�.

ally changed by condition mismatches. However, we do
consider that the distributions of SSCs computed from
large amounts of speakers will be highly overlapped be-
tween di�erent phones, since formant peaks are speaker
dependent. We, therefore, introduce a speaker normal-
ization technique (e.g., [5], [6]) into the SSC computa-
tion to reduce the speaker variability. In this paper,
we use a speaker normalization technique based on fre-
quency warping.

Warping factor �, which is used as a coe�cient for



spectral warping to normalize the speaker's vocal tract
length, can be computed as

� =

X
p2P

Fc;p

X
p2P

Fs;p
; (2)

where P denotes the set of vowels f/a/, /i/, /u/,

/e/, /o/g. Fc;p and Fs;p are the averages of the sec-
ond formant frequencies for the vowel p for the train-
ing corpus c and the speaker s, respectively. By using
warping factor �, speaker normalized SSCs, �Cm, can
be computed as,

�Cm =

Z hm

lm

f � P (��1f )df

Z hm

lm

P (��1f)df

: (3)

Figure 3 illustrates the e�ectiveness of the speaker
normalized SSCs. Figures 3(a) and (b) show the con-
ventional (i.e., without speaker normalization) and the
proposed (i.e., with speaker normalization) SSCs, re-
spectively. The distributions (� � 0:5�) of the �rst
and second order SSCs for the �ve Japanese vowels
are shown as ovals. These distributions were obtained
from 230 speakers. We can see that the overlaps be-
tween vowels are successfully reduced by introducing
the speaker normalization technique (e.g., /i/ and /e/).
From these �gures, we can expect speaker normalized
SSCs to give a better recognition performance than the
conventional SSCs.

4. EXPERIMENTS

The speaker normalized SSCs were evaluated through
continuous word recognition on a Japanese spontaneous
speech database [7].

4.1. Conditions

A total of 230 speaker (100 male and 130 female) di-
alogues sampled at 16 kHz were used for the training.
For the open test set, 42 speaker (17 male and 25 fe-
male) dialogues were used. 12-dimensional MFCCs and
log power, and their �rst and second derivatives (i.e.,
39 dimensions in total), which were computed using a
20 msec window duration and a 10 msec frame period,
were used as a conventional feature vector (MFCC).
In addition, 6-dimensional SSCs and their �rst deriva-
tives were used together with the conventional vector
(i.e., 51 dimensions in total) (MFCC+SSC). In the
SSC computation, the Nyquist frequency band (from
0 to 8000 Hz) was divided equally into six subbands
(i.e., M = 6), and  in Eq. (1) and Eq. (3) was
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Figure 3: Distributions for �ve Japanese vowels for 230
speakers (��0:5�). The upper �gure shows the distri-
butions without speaker normalization technique. The
lower �gure shows the distributions with speaker nor-
malization technique.

set to 0.5. The speaker normalization technique de-
scribed in Section 3 was applied to MFCC and to
MFCC+SSC (referred to as SN-MFCC and SN-
MFCC+SN-SSC, respectively). A warping factor
was calculated for each speaker in Eq. (2) from clean
speech. Formant frequencies were automatically ob-
tained by using the commercially-available Waves+
package.

For these four feature vectors (i.e., MFCC,
MFCC+SSC, SN-MFCC, and SN-MFCC+SN-
SSC), shared-state context dependent HMMs with �ve
Gaussian mixture components per state were trained
from clean speech [8]. The total number of states was
set to 800. We used a spontaneous speech recognizer
using cross-word context constrained word graphs [9].



Table 1: Recognition results (word accuracy in %).
feature vector SNR [dB]

10 15 20 30
MFCC 19.7 44.4 63.1 72.5
MFCC+SSC 30.1 51.2 65.0 71.0
improvement (%) 13.0 12.2 5.2 -5.5

Table 2: Recognition results with speaker normaliza-
tion technique (word accuracy in %).

feature vector SNR [dB]
10 15 20 30

SN-MFCC 20.0 47.6 66.5 73.7
SN-MFCC+SN-SSC 32.9 58.2 68.7 74.1
improvement (%) 16.1 20.3 6.5 1.5

The test vocabulary consisted of about 7,000 words,
and the variable-length N -gram [10] was used for the
language model.

Workstation noise was added to clean speech utter-
ances at four kinds of signal-to-noise ratios (SNR=10,
15, 20, and 30 dB). Each SNR was measured by calcu-
lating the ratio of speech energy to noise energy at the
utterance level.

4.2. Results

The recognition results for MFCC and MFCC+
SSC are shown in Table 1. We can see from these re-
sults that SSCs are useful feature parameters especially
for lower SNRs. Actually, we observed a relative im-
provement in the error rate by 13.0% at SNR=10dB.
MFCC+SSC, however, degraded the recognition per-
formance at SNR=30dB compared to MFCC.

The recognition results for SN-MFCC and SN-
MFCC+SN-SSC are shown in Table 2. First, we can
see from this table that SSCs help improve the recogni-
tion performance for all SNRs. Especially, we observed
a signi�cant improvement in the error rate by 20.3% at
SNR=15dB. Furthermore, by comparing Tables 1 and
2, the improvement for each SNR in Table 2 is con-
sistently larger than the corresponding one in Table 1.
This implies that incorporating the speaker normaliza-
tion technique into the conventional SSC computation
is e�ective for improving the recognition performance.

5. CONCLUSIONS

In this paper, we have proposed speaker normalized
spectral subband centroids (SSCs) as supplementary
features in noise environment speech recognition. SSCs
can be readily computed from the power spectrum with-

out any knowledge of the current noise. To reduce
the speaker variability, a speaker normalization tech-
nique was successfully incorporated into the conven-
tional SSC computation. Experimental results on spon-
taneous speech recognition showed that the proposed
SSCs give a consistently better performance under sev-
eral noise conditions than the conventional SSCs. We
could also con�rm large improvements in the word ac-
curacy (16.1% at SNR=10dB and 20.3% at SNR=15dB)
by using the proposed SSCs together with the conven-
tional feature parameters.

In our experiments, noisy speech was arti�cially
generated by adding noise signals to clean speech. As
it is widely known that formant frequencies change
depending on the SNR (i.e., the Lombard e�ect), we
plan to perform further experiments by using real noisy
speech.
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