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ABSTRACT

Separability of signal mixtures given only one mixture observa-
tion is defined as the identification of the accuracy to which the
signals can be separated. The paper shows that when signals are
separated using the generalised Wiener filter, the degree of sepa-
rability can be deduced from the filter structure. To identify this
structure, the processes are represented on an arbitrary spectral do-
main, and a sufficient solution to the Wiener filter is obtained. The
filter is composed of a term independent of the signal values, cor-
responding to regions in the spectral domain where the desired sig-
nal components are not distorted by interfering noise components,
and a term dependent on the signal correlations, corresponding to
the region where components overlap. An example of determining
perfect separability of modulated random signals is given.

1. INTRODUCTION

This paper investigates theseparabilityof signal mixtures given,
at each time instance, onlyoneobservation of the mixture in the
temporal domain. In this context, separability refers to identifying
whether the mixture of two signals can be separated to a given
degree of accuracy. The problem of actually separating the signals
is then referred to assignal separation. Formally, this paper deals
with the following problem:1

Definition 1 (Separability). Suppose a desired signald(t) is cor-
rupted by an additive noise signaln(t), such that the observation,
x(t) of the desired signal, is given byx(t) = d(t)+n(t); 8t 2 T .
The separability problem is to determine conditions ond(t) and
n(t) such that, givenx(t), an estimate of the desired signal,d̂(t),
can be obtained to a given degree of accuracy.

This will be answered assuming that signal separation is pos-
sible using linear time-varying (LTV) filters. It is well known that
stationary signals are “perfectly” separable if their Power Spec-
trums do not overlap in the Fourier domain. Separation can only
then be achieved when the frequency bands of the Power Spec-
trums are knowna-priori. Furthermore, non-stationary signals
that are non-overlapping in the time domain can only be separated
when the times at which the signals “are switched on” are known.
Thus, although signals may be separable, signal separation can
only be performed by exploitinga-priori known signal features,
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1Note that bold symbols represent scalar stochastic processes, whereas

normal type symbols represent scalar deterministic processes.

since the separation problem is inherently under-constrained; at
each time instant, there are two unknowns, and one equation.

As finite bandwidth signals in the Fourier domain can be sep-
arated by a linear time invariant (LTI) (bandpass) filter, and finite
duration signals can be separated by a LTV filter (a switch), this
raises the question as to whether there exists some other signal
domain where the representation of two classes of signals are dis-
joint, such that the signals can be recovered using a generalised
bandpass filter; the filter may neither be as simple as a switch or
conventional bandpass filter, but somewhere “in-between”.

Definition 2 (Perfect Signal Separation).“Perfect Signal Sepa-
ration” is achieved when the mean squared error (MSE),

�2(t) = E
�
"
2(t)

� def
= E

h
jd̂(t)� d(t)j2

i
(1)

is zero at each desired time instance;�2(t) = 0; 8t 2 T . Bode and
Shannon [1] provide a stimulating discussion of the problems and
consequences of using MSE as an error criterion, but regardless of
these problems, this criterion will be taken here as the definition of
separation accuracy.

Definition 3 (The Autocorrelation Function). The autocorrela-
tion function(ACF) of a stochastic process atft; �g is defined as2

Rxx (t; �) = E [x(t)x(�)] (2)

whereE [z(t)] denotes expectation with respect toz(t).

Theorem 1 (Wiener-Hopf Filter (WHF)). If signal separation is
achieved by LTV filtering of the observed signal, then

d̂(t) =

Z
T

h(t; �)x(�) d�; 8t 2 T (3)

whereh(t; �), is the response at timet given an impulse occurred
at the filter input at time� , and is chosen such that�2(t) is min-
imised. This leads to the WHF,h(t; � ) given by the solution of

Rdx (t; � ) =

Z
T

h(t; �)Rxx (�; � ) d�; 8t 2 T; 8� 2 T (4)

with the MSE,8t 2 T , given by

�2(t) = Rdd (t; t)�

Z
T

h(t; �)Rdx (t; �) d� (5)

For “perfect separation”,

Rdd (t; t) =

Z
T

h(t; �)Rdx (t; �) d�; 8t 2 T (6)

2for simplicity, all processes are assumed to be real and have zero mean.



It is desirable that the required prior knowledge for signal sep-
aration will be common to a “class” of process; eg., the prior
knowledge required to separate stationary signals is the Fourier
frequency range over which the signals have non-zero spectral
components. It is not necessary to know, however, the phase and
magnitude of these components to achieve separation. Thus, it is
desirable that the WHF should not depend on the exact form of the
ACFs, but some distinguishing feature of a “class” of stochastic
signals. The problem of estimating these distinguishing features
is left as further work; here, only theform of these features is re-
quired to determine separability.

2. GENERALISED POWER SPECTRUM

In signal theory, spectra are often associated with Fourier trans-
forms, and this idea may be extended by using a general integral
transform to represent a particular realisation of a stochastic pro-
cess as the superposition or integral of some given basis functions,
with stochastic coefficients. This concept is a generalisation of
the Fourier transform of a stochastic process discussed in [2], and
a further widely known special case is the Karhunen-Lo`eve (KL)
Transform [2].

The stochastic spectral representation of acontinuous time
stochastic processx(t) on an arbitrarycontinuous spectral do-
main� isX(�), defined by

X(�) =

Z
T

x(t)K(t; �)dt ; 8� 2 � (7)

where this integral is interpreted in a Mean Square (MS) limit, and
� is the region in the signal space in whichX(�) lies. The function
K(t; �) is called thedirect transform basis kernel. Conversely,
X(�) may be represented on the time domaint asx̂(t);

x̂(t) =

Z
�

X(�)k(�; t)d� ; 8t 2 T (8)

wherek(�; t) is called theinverse transformor reciprocal basis
kernelof K(t; �). It may be shown that the representationx̂(t)
equalsx(t) in the MS sense:

E
�
jx(t)� x̂(t)j2

�
= 0 (9)

(The proof follows a similar line to the proof in [2], given for the
stochastic Fourier series). It is assumed that the transformation is
isomorphic, so for a givenx(t), there exists a uniqueX(�) and
conversely, for a givenX(�) there exists a uniquêx(t). This im-
poses the constraints [3]

�(t� � ) =

Z
�

k(�; t)K(�; �) d� ; 8t; � 2 T

�(�� �̂) =

Z
T

k(�; t)K(t; �̂) dt ; 8�; �̂ 2 �

(10)

where�(t) is the Dirac delta function. Any pair of functionsk(�; t)
andK(t; �) which satisfy (10) are called a transform pair.

The spectral decomposition for the finitediscrete time, finite
discretespectral case can be viewed as a change in basis vectors.3

3Given the discrete transform, often results obtained in this paper for
the continuous case can be converted into the finite discrete case by replac-
ing integrals with sums.

The representation of a discrete signalx(n); n 2 Z, on an arbi-
trary finite discrete spectral domainp; p 2 Z, isX(p), where

X(p) =
X
n2N

x(n)K(n; p); x̂(n) =
X
p2P

X(p)k(p; n) (11)

The support of each domain is finite, eg.,N = f0; N � 1g, and
P = f0; P � 1g. The kernels must satisfy

kK = Kk = I (12)

where
�
k
�
pm

= k(p;m);
�
K
�
mp

= K(m; p); m 2 f0; N �

1g; p 2 f0; P � 1g, andI is the identity martix.
SinceRxx (t; �) is a well defined 2D deterministic function,

then, as a natural extension to the concept of the stationary power
spectrum [2], it may be expressed on an arbitrary spectral domain
using a 2D integral transform. It will be shown in a forthcoming
paper that, by considering the form of the ACF ofX(�) in (7), and
the innovations representation of a stochastic process [2], [4], the
kernel of this 2D transform should beseparable.

Definition 4 (Generalised Power Spectrum (GPS).The GPS of
the processx(t) and the inverse relationship are defined as

Pxx(�; �̂) =

ZZ

T T

Rxx (t; �) K(t; �)K�(�; �̂) dt d� (13)

Rxx (t; � ) =

ZZ

��

Pxx(�; �̂) k(�; t)k
�(�̂; � ) d� d�̂ (14)

whereK(t; �) andk(�; t) are related by (10). Some basic rela-
tions are;P�xx(�; �̂) = Pxx(�̂; �), Px̂x̂(�t; �� ) = Pxx(�t; ��),
andRx̂x̂ (t; �) = Rxx (t; � ). Special cases of the GPS include
Priestley’s Evolutionary Spectrum [5] and Lo`eves Harmonizable
processes [4], where the power spectrum is the symplectic 2D
Fourier transform of the ACF.

Definition 5. The cross-correlation of the processesy(t) andx(t)
is Ryx (t; � ) = E [y(t)x�(�)], and the Generalised Cross Power
Spectrum (GCPS) of the processesy(t) andx(t) is defined as
Pyx(�; �̂) = E[Y(�)X�(�̂)], where8�; �̂ 2 �0,

Pyx(�; �̂) =

ZZ

T T

Ryx (t; � ) K(t; �)K�(�; �̂)dt d� (15)

and the inverse relationship is of the form

Ryx (t; � ) =

ZZ

�0 �0

Pyx(�; �̂)k(�; t) k
�(�̂; �)d�d�̂ (16)

where�0 is the region over which the stochastic spectra ofx(t)

andy(t) overlap. Note thatP�yx(�; �̂) = Pxy(�̂; �).

3. SOLUTIONS OF THE WIENER FILTER

Solutions of equation (4) are not easily found, although it is easy to
show [6] that the solution can be reduced to the factorisation of the
ACFs; the methods of Zadeh and Miller [6], Shinbrot [7], [8], and
Darlington [9] are either explicitly based on the factorisation of
Rxx (t; �) andRdx (t; � ), or make implicit use of it. A sufficient
solution in this paper relies on the factorisation of the ACFs into
the GPS, although a necessary condition for a solution has not yet
been found. The case when the input to the Wiener filterx(t) =
d(t) + n(t), is called theadditive case.



Theorem 2. SupposeRdd (t; �), Rnn (t; �) and Rdn (t; � ) can
be written as the generalised spectral decompositions

Rdd (t; � ) =

ZZ

�̂d �̂d

Pdd(�; �̂) k(�; t)k
�(�̂; � )d�d�̂ (17)

Rnn (t; � ) =

ZZ

�̂n �̂n

Pnn(�; �̂) k(�; t)k
�(�̂; �)d�d�̂ (18)

Rdn (t; � ) =

ZZ

�0 �0

Pdn(�; �̂) k(�; t)k
�(�̂; �)d� d�̂ (19)

where�̂d � �d � �0 and �̂n � �n � �0.4 Here,�d and�n
are the regions of the� space over which the spectral components
of d(t) andn(t) respectively, do not overlap, and�0 is the re-
gion over which spectral components ofd(t) andn(t) do overlap.
Hence,�d \ �n = f;g, �d \ �0 = f;g and�n \ �0 = f;g.

A sufficient solutionh(t; �), to the WHF equation(4) for the
additive case, whenfT g = fTg, is

h(t; �) =

Z

�d

k(�; t)K(�; �)d�

+

ZZ

�0 �0

H0(�; �̂)k(�; t)K(�; �̂) d�d�̂

(20)

whereH0(�t; �� ) is the solution of

Pdx(�; �̂) =

Z

�0

H0(�; ��)Pxx(��; �̂) d��; 8�; �̂ 2 �0 (21)

wherePxx(�) = Pdx(�)+Pnx(�),Pdx(�) = Pdd(�)+Pdn(�) and
Pnx(�) = Pnd(�) + Pnn(�). The resulting MSE is

�2(t) =

ZZ

�0 �0

P��(�; �̂) k(�; t)k
�(�̂; t) d�d�̂ (22)

where the spectrum of�2(t) is given by

P��(�; �̂) = Pdd(�; �̂)�

Z

�0

H0(�; ��)Pdx(��; �̂) d��

=

Z

�0

H0(�; ��)
n
Pnd(��; �̂) + Pnn(��; �̂)

o
d��

It is assumed that the initial state of the filterh(t; �) is at rest.

The proof of this theorem is essentially by substitution, and
will be published in a forthcoming paper. The first term in equation
(20) is independent of the signal ACFs, unlike the second term.
This first term is the expression for an ideal filter, first proposed by
Zadeh in 1952 [10], [11] and [12], defined on any arbitrary domain
as a filter which passes without distortion allgeneralised frequency
components falling in a certain range and rejecting all others. This
term corresponds to the perfect separation of the non-overlapping
signal components. Hence, immediately, a condition for perfect
signal separation is obtained:

4where� denotes theorthogonal direct sum.

Theorem 3. Perfect single channel signal separation is only pos-
sible if there exists some domain where the generalised spectral
representations of the desired and noise signals are disjoint. Thus,
the desired and noise signals must be uncorrelated processes.

Since the ideal filter is independent of the signalsvalue, the
filter will separate the class of all non-stationary stochastic signals
which are disjoint in the filters domain, provided the components
of the desired signal lie in the passband of the filter. The onlyprior
knowledgerequired for separation isthe domain in which the sig-
nals are disjoint, and the spectral regions over which the spectral
components lie; full knowledge of the ACF is not required.

The second term of (20) is signal dependent, given by the so-
lution of (21); as expected, the filtered power spectrum of each
process in the overlapping spectral region sums to the power spec-
trum of the desired signal. The MSE is the energy of the filtered
noise process contained in the overlapping spectra.

4. SEPARATING MODULATED SIGNALS

This section will determine separability constraints for “filtered
modulated” signals of the form

d(t) =

Z
T

hd(t; � ) a(� )d�

n(t) =

Z
T

hn(t; �) b(� )d�

9>>=
>>;

t 2 T (23)

where, since some prior knowledge is required to determine the
structure of the signalsd(t) andn(t), it is assumed thatd(t) and
n(t) overlap in the time and Fourier spectral domains (to avoid
trivial cases),a(t) andb(t) are bandlimited to�!c (but other-
wise unknown), and thathd(t; � ) andhn(t; �) are known deter-
ministic signals. A special case of filtered modulation is “uniform
modulation” [5], examples of which include quadrature and spread
spectrum modulation schemes. This problem will be solved by
“concatenating power spectras” of each process.

Noting thata(t) andb(t) are bandlimited in the Fourier do-
main, they admit the representations

a(t) =
1

2�

!cZ
�!c

A(!) ej!t d!; b(t) =
1

2�

!cZ
�!c

B(!) ej!t d!

and therefore, after substitution into (23), and some slight rear-
rangement,d(t) andn(t) admit the representation

d(t) =

2!cZ
0

D(!) k(!; t)d!; n(t) =

0Z
�2!c

N(!) k(!; t) d!

where the kernelk(!; t) is defined as

k(!; t) =

8>>>>>><
>>>>>>:

1

2�

Z
T

hd(t; �) e
j(!�!c)� d� for ! 2 f0; 2!cg

1

2�

Z
T

hn(t; � ) e
j(!+!c)� d� for ! 2 f�2!c; 0g

1

2�

Z
T

hv(t; �) e
j!� d� for ! =2 f�2!c; 2!cg

andD(!) = A(! � !c), N(!) = B(! + !c). Notice that the
form of kv(!; t) is arbitrary and has been chosen for symmetry. It
follows that a convenient form of expressing the inverse kernel is,



K(t; !) =

8>>>>>><
>>>>>>:

Z
T

gd(t; �) e
�j(!�!c)� d� for ! 2 f0; 2!cg

Z
T

gn(t; �) e
�j(!+!c)� d� for ! 2 f�2!c; 0g

Z
T

gv(t; �) e
�j!� d� for ! =2 f�2!c; 2!cg

If d(t) andn(t) are separable, thenk(!; t) andK(t; !) must sat-
isfy (10); substituion of these expressions into (10) creates con-
straints on the filtershd(t; �) andhn(t; �). When possible,hv(t; � )
will be chosen to complete a basis function set. However, in the
continuous case, finding general constraints on the filtersh(�)(t; � )
is quite difficult, and no intuitive results have yet been found. For-
tunately, the discrete case leads to more tractable results. In the
discrete – time, discrete spectrum case these expressions become

a(m) =
1

N

pcX
�pc

A(p) ejmp 2�
N ; b(m) =

1

N

pcX
�pc

B(p) ejmp 2�
N

where, for clarity, assumeN = P , a(m); b(m); d(m); n(m) 2
K
N , anda(m) andb(m) are bandlimited topc. Hence,d(m) and
n(m) admit the representations,

d(m) =
X
p2P

D(p)k(p;m); n(m) =
X
p2P

N(p)k(p;m)

whereD(p) = A(p� pc),N(p) = B(p+ pc), and

k(p;m) =

8>>>>>>><
>>>>>>>:

1

N

X
m̂2N

hd(m; m̂) ejm̂(p�pc)
2�

N for p 2 PD

1

N

X
m̂2N

hn(m; m̂) ejm̂(p+pc)
2�

N for p 2 PN

1

N

X
m̂2N

hv(m; m̂) ejm̂p 2�
N for p 2 PV

K(m; p) =

8>>>>>><
>>>>>>:

X
m̂2N

gd(m; m̂) e�jm̂(p�pc)
2�

N for p 2 PD

X
m̂2N

gn(m; m̂) e�jm̂(p+pc)
2�

N for p 2 PN

X
m̂2N

gv(m; m̂) e�jm̂p 2�
N for p 2 PV

with m 2 N , PD = f0; 2pc � 1g, PN = fP � 2pc; P � 1g and
Pv = f2pc; P � 2pc � 1g. If separation is possible, then these
kernels must be transform pairs; thus the square “kernel matrix”k

must be invertible (have full rank). DefiningWmp
N = 1

N
ejmp 2�

N ,
and the matrices�

k̂d
�
pm

=W
m(p�pc)
N ; p 2 PD;

�
k̂v
�
pm

=Wmp
N ; p 2 PV ;�

k̂n
�
pm

=W
m(p+pc)
N ; p 2 PN ;

�
H(�)

�
mm̂

= h(�)(m; m̂)

wherem; m̂ 2 N , andHd; Hn 2 K
N�N ; k can be partitioned as

kT =
h
Hd k̂

T
d

��� Hn k̂
T
n

��� Hv k̂
T
v

i
(24)

whereHv k̂v are the unused basis vectors.5 Since the Fourier ker-
nel is an orthonormal basis, thenk̂(�) have full rank;

rank[k̂d] = rank[k̂n] = 2pc and rank[k̂v] = P � 4pc (25)

5Notek̂d andk̂n are identical; their explicit form is shown to emphasis
that for separability,H(�) k̂(�) span different regions of thep-domain.

Theorem 4. The signalsd(m) and n(m) are separable if the
fully known matrixk of equation(24) is of full rank.

One physical way of interpreting the rˆole of Hd andHn in
equation (24), is to considerHd andHn as linear transformations
of a(m) andb(m), mapping them todifferent subspaces; d(m)
andn(m) are not separable when these linear transformations do
not mapa(m) andb(m) to disjoint subspaces.

5. APPLICATIONS

Filtered and uniformly modulated signals that overlap in the Fourier
domain are often assumed to be inseparable. If the modulating
(bandlimited) functionsa(t) andb(t) are unknown, but the mod-
ulated functionsh(�)(t) are known, then provided (24) is satisfied,
the resulting processes are in fact separable. This result has ap-
plications where modulated signals share the same single channel
and separation is required, for example when taking multiple mea-
surements in seismology, and, of course, transmission schemes in
communications. A forthcoming paper will discuss further sepa-
rable classes of nonstationary signals across a single channel.
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