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ABSTRACT
There are various de-noising algorithms and optimization
methods for different signal and noise characteristics. However,
the signals used in real application may have deviations from
the model. For example: signal and/or noise may not be
stationary or a proper model for them may not be available.
MCG (magnetocardiography) is an example signal, where
conventional de-noising methods are not giving satisfactory
results. Local adaptive processing allow to modify filtering
parameters according to the specific properties of different
“portions” of a signal. In this paper a methodology for adopting
the transform domain local adaptive processing to the specific
task of MCG signal de-noising is introduced.

1. INTRODUCTION
The electrocardiography (ECG) and the magnetocardiography
(MCG) are fully non-invasive, totally harmless, safe and quick
methods for measuring the electric activity of the heart.
However, diagnostic information conveyed by the ECG and
MCG signals is limited. Also differences in the ECG and MCG
waveforms induced by a diagnostic event may overlap with
normal inter-individual variability. The simultaneous ECG and
MCG recordings convey extra information associated with the
distribution of the volume source (electric activity of the heart)
with respect to the single ECG or MCG measurement [3][6][11].
Combining the information conveyed by the ECG and MCG
leads, at least theoretically, may improve the accuracy and the
content of the diagnostic information extracted from the
recordings. However, this requires proper characterization of the
waveform morphologies and this needs better preservation of
the signal details and higher attenuation of corrupting noise.
Furthermore, especially the MCG signals may be highly
distorted by the environmental noise interfering with the signal
spectrum. This brings the necessity of improved de-noising. A
transform-based non-linear filter for fulfilling the requirements
of combined electromagnetocardiography (EMCG) analysis is
introduced.

Low frequency noise, line frequency interference and Gaussian
noise corrupting MCG recordings are not stationary. The MCG
signals are also corrupted by arbitrary noise components induced
by the sensor movement in the geomagnetic field of the earth
and a proper model for noise in the MCG recordings is not
available [3][6][11]. Those facts bring problems in applicability
of conventional de-noising algorithms for MCG. The transform-

based non-linear filtering was adapted to the de-noising
requirements of combined electromagnetocardiography (EMCG)
analysis by employing a signal based suitable threshold
estimation method [11].

2. LOCAL ADAPTIVE PROCESSING IN
TRANSFORM DOMAIN

Processing the signals in an orthogonal transform domain rather
than time domain suggests certain advantages, when the spectra
of the signal and the noise can be separated in an orthogonal
transform domain, in terms of incorporating the available a
priory information about the signal to the design of the filter.
Performing the transform domain de-noising give better results
when it is applied locally rather than globally [12].

When the spectrum of the signal and the noise can be separated
in any invertible transform domain, de-noising the signal in the
transform domain and performing the inverse transform is an
efficient method of removing the noise [1][12].

General filtering algorithm consists of the following three steps:

1. Computing spectral coefficients

a = T b

of the observed signal period b within the window over the
chosen orthogonal transform T.

2. Modifying the spectral coefficients

3. Performing the inverse transform

The signal and noise spectra may be partially overlapping in
most of the real applications. Therefore, the higher levels of
noise attenuation are possible only at the cost of the lower detail
preservation. The local filtering of the signals with the variable
modification of the spectral coefficients can dynamically
optimize the noise attenuation with acceptable detail
preservation [11].

Most of the signals carrying information are highly correlated.
Therefore, in most cases where a noisy signal spectrum
coefficient is over a threshold value associated with noise
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variance σ2 the original signal has significant component
[1][4][5][7][10][12].

Generally the modification is done by hard or soft thresholding.
Hard thresholding corresponds to removing all coefficients
whose absolute value are lower than the threshold and leaving
the other coefficients unchanged. The soft thresholding modifies
all coefficients lower than the threshold to zero and subtracts the
threshold from the absolute value of the remaining coefficients.
When the threshold values are chosen correctly, the noise
attenuation can be optimized locally with a negligible distortion
of the signal details. Furthermore, performing the de-noising in
a running window and averaging all of the results returned for
the same sample suppresses the artifacts induced by de-noising
[4][10][12].

The proper threshold estimation method is the main tool for
adoption of the algorithm to the requirements of a specific
application.

A de-noising algorithm can be applied if a priori information
considered in the algorithm is available.

When the noise is white Gaussian and stationary, a constant
threshold t≅3*σ performs the best results. The noise variance
for white Gaussian noise may be estimated by:

The algorithm may be used with colored noise by frequency
varying thresholding. Temporally varying thresholding with
local estimation of noise variance may improve the de-noising
performance for varying noise variance σ2. However, in some
applications the noise may not be stationary (the distribution of
the noise spectral components is also non-stationary). In this
case a proper noise model is not available and the only available
a priori information for any de-noising algorithm can be
extracted from the signal.

3. MCG DE-NOISING
The main problems of MCG signal de-noising are as follows:

1. The noise in MCG recordings is high and has non-
stationary components.

2. Some local portions (QRS complex) of the signal have
important and significant components in 30-54 Hz. band,
while there is considerable noise components in the same
bands.

3. Commonly used method for de-noising the MCG signals is
ensemble averaging triggered by ECG signals. However,
intra-subject anatomical variability, motion artifacts, etc do
not allow a perfect template matching and cause smoothing
of important details.

4. Filtering by a temporally varying algorithm according to the
local spectral characteristics may perform noise attenuation
with negligible distortion in the features of the
characteristic waveforms of the signal.

5. The conventional ECG analysis does not need very high de-
noising accuracy. However, improving the content and

accuracy of the diagnostic information on the basis of
simultaneous ECG and MCG is under investigation and
this improvement require accurately de-noised ECG and
MCG signals.

A transform domain adaptive filter employing a signal based
proper threshold estimation methodology was used for final de-
noising of the MCG signals to attenuate the noise components
interfering with the characteristic waveforms of the signal.

The suitable threshold estimation method employs the following
steps.

• Dividing a sufficient portion (sufficiently long for
occupying at least one heart beat) of the signal into N non-
overlapping blocks.

• Performing the transform for each non-overlapping
window.

• Computing the maximum of absolute value of each spectral
coefficient calculated in different windows.

• Setting the threshold for each spectral coefficient as:

Where ci corresponds to the ratio of the threshold to the
maximum of the spectral coefficient

The following selections were used for MCG de-noising:

1. The DCT was selected as the transform for processing [8].

2. A window size of 32 was used for signals sampled at 500
Hz sampling frequency.

3. The first four DCT coefficients belonging to the
frequencies lower than 23 Hz are passed without
thresholding mainly for preserving P-wave details.

4. The ratios from 5. to 8. DCT coefficients were set as:

c(5)=0.6, c(6)=0.8, c(7)=0.9, c(8)=1

5. The 9. to 32. DCT coefficients corresponding to
frequencies higher than 54 Hz were set to zero without
thresholding.

Keeping the distortions negligible was mainly considered in
selection of the filtering parameters. Line frequency interference
and low frequency noise can be removed by conventional
methods (notch filtering, linear interpolation, etc) prior to final
de-noising. The continuos recording version of the algorithm
uses the median of first three beats in setting of the thresholds
and the same threshold is used for the whole recording [11].

4. EXPERIMENTAL RESULTS

4.1 Comparative results

A filtered MCG waveform is considered as the clean signal. The
clean signal was corrupted by different levels of additive
Gaussian noise. The corrupted signals were filtered by different
filters and the results are presented in Table 4-1.
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Signal SNR1
(dB)

SNR2
(dB)

SNR3
(dB)

Clean Signal inf. inf. inf.

Corrupted signal 4 7.7 10

LA filtered in transform domain 14 18 23

Filtered by Wiener filter 13 17.2 21

LAF using wavelet transform 14.1 18.1 23

LAF using noise variance 17 21 24

LAF using noise variance when
band relations were considered

18.8 22.6 24

LAF using locally estimated
noise variance

18.7 21.4 22.7

LAF using locally estimated
noise variance when band
relations were considered

18.9 22.3 23.9

LAF with varying transform size 17 21 24.4

Global wavelet de-noising 12.5 16.3 17.6

Translation invariant wavelet
de-noising

17.9 20.1 22

Table 4-1: Comparative results

Figure 4-1: Plots of comparison. The remaining noise
components in transform domain filtering is distributed,
while most of the remaining error in Wiener filtering is
in beginning, R-peak and end parts of the QRS complex
which are important in characterization of the waveform.

‘LA (local adaptive) filtered in transform domain’ corresponds
to the developed filter. An optimal ‘Wiener filter’ of size 32 was

used in comparison. ‘LAF using wavelet transform’ was the
same algorithm only using a local full wavelet decomposition by
Daubechies 4. ‘LAF using noise variance’ was performed by
using a fixed threshold of 3*σ and application needs the
information on noise variance. The 'band relations' were
considered by thresholding all spectral coefficients which
represent an equal or higher frequency then the lowest
frequency below a threshold of 1.5*σ. ‘LAF using locally
estimated noise variance’ was performed by using a median
based local noise variance estimator [5]. Its application does not
need the information on noise variance. But adoption to colored
noise needs information of the noise model. ‘LAF with varying
transform size’ was performed by local noise variance
estimation and switching between transform sizes of 32 and 64
according to the variance of the corrupted signal. Global and
translation invariant wavelet de-noising was performed by using
full decomposition by Daubechies 8. The main difference
between the achieved and possible performances was due to the
selections for keeping the desired detail preservation. For
example frequencies lower than 23 Hz were passed for
preserving P-wave. P-wave has a negligible contribution to the
total signal power but has a diagnostic importance.

The clean, corrupted and filtered waveforms by transform
domain and Wiener filters are plotted in figure 4-1.

4.2 Experimental results from application point of
view

252 MCG and 229 ECG waveforms were filtered by the
developed filter as a final de-noising. A wavelet based
characteristic wave detection algorithm [2][9][11] detected all
QRS complexes and T-waves without any error for a total of 481
recordings after filtering. This filter removed the local extrema
in QRS complexes induced by noise. The T-waves and P-waves
in the filtered signals were visible. Accurate evaluation of the P-
Q segments and S-T segments was possible in the filtered
signals. Four MCG samples filtered by developed filter and
Wiener filter are plotted in Figure 4-2 to 4-5.

Figure 4-2 Figure 4.3



Significant noise components may be left after notch filtering,
baseline correction and template averaging of the MCG signals.
Remaining noise may be attenuated successfully by transform
domain filtering (Figure 4-4 is a good example) with negligible
distortion in signal waveforms. The filtered MCG signals are
sufficiently clean for proper characterization necessary for
investigating the probability of extracting extra diagnostic
information (for example spatial properties of myocardial
infarction, etc.) from the simultaneous ECG and MCG.

  Figure 4-4       Figure 4-5

5. SUMMARY AND CONCLUSIONS

When the signal is corrupted by random noise, which can not be
separated in frequency or time domain, local adaptive filtering
of the noisy signal in a suitable orthogonal transform domain is
a promising solution for improving the balance between detail
preservation and noise attenuation.

The algorithm can be adjusted for the requirements and
available a priori information of a specific task by the selected
threshold estimation method. Especially when the noise is non-
stationary and a proper noise model is not available signal based
suitable threshold estimation method may be employed. This
fact makes the algorithm available for some applications where
most of the conventional algorithms considering a noise model
fail. The methodology can be used in similar problems where a
proper model for noise is not available.

The future research in this area may include development of
combination methods of the values computed for the same
sample in different windows rather than simple averaging,
incorporating the filtering algorithm with post-processing and
pre-processing methods where necessary (like image
enhancement, impulse removal, etc).
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