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ABSTRACT

In this paper, we show that the concept of Voiced-Unvoiced (V-
U) classification of speech sounds can be incorporated not only
in speech analysis or speech enhancement processes, but also
can be useful for recognition processes. That is, the incorpora-
tion of such a classification in a continuous speech recognition
(CSR) system not only improves its performance in low SNR
environments, but also limits the time and the necessary mem-
ory to carry out the process of the recognition. The proposed
V-U classification of the speech sounds has two principal func-
tions: (1) it allows the enhancement of the voiced and unvoiced
parts of speech separately; (2) it limits the Viterbi search space,
and consequently the process of recognition can be carried out in
real time without degrading the performance of the system. We
prove via experiments that such a system outperforms the base-
line HTK when a V-U decision is included in both front- and
far-end of the HTK-based recognizer.

1. INTRODUCTION

The performance of CSR systems dramatically decreases when
they are trained and used in different environments. However,
some features of the speech signal can be extracted accurately
even in noisy environments. In this paper, we show that the per-
formance of a CSR system is improved when such features are
included in such a system, either in the pre-processing or/and
the post-processing stage of such a recognizer. Motivated by
this fact, we designed a new system for the automatic recog-
nition of speech signals in highly interfering noise, in which
two phases were proposed for the recognition process. The first
phase, which is applied at the acoustic level, and is performed
by applying a V-U classification of speech signals at the acoustic
level, provides us not only with a decision that is used for the
enhancement of the speech signal, but also with preliminary in-
formation which simplifies the searching complexity during the
second phase of recognition at the phonetic-recognition level.
This is performed by classifying the speech signal into voiced
and unvoiced components using a robust algorithm. These two
parts are then enhanced separately using an adaptive comb filter
(ACF) and a modified spectral subtraction (MSS) approach to
enhance each part. The enhanced signals are then applied to an
HMM-based recognizer, the second phase of the recognition, to
recognize the spoken utterances via a Viterbi beam search based
on the V-U decision information.

While the searching complexity of the proposed system is low-
ered, the obtained performance of such a system was not as
accurate as the original one. This was due to problems that
arose from V-U classification errors at the boundaries of the
speech segments and the voicing nature of some voiced context-
independent phones which are partially devoiced depending on
the context. In order to circumvent such problems, some pho-
netic constraints were added when dealing with the boundary
segments. The advantages of our CSR system are the improve-
ment of the recognition performance at low SNRs, as well as the
reduction of system complexity. Several modifications to solve
the problems associated with this system have also been pre-
sented in this paper. These modifications permit our system to
work efficiently, even at very low SNRs.

This paper will be organized into the following sections. In sec-
tion 2, we describe the different parts of the front-end of such a
recognizer. Next, in section 3 we proceed with the description of
the proposed V-U-based post-processing recognizer, the search-
ing technique and how the V-U decision is included in the post-
processing stage. Next, the experimental results that demon-
strate the effectiveness of our proposed approach for recognition
are presented in section 4. Then, we proceed in section 4 with
the evaluation of the proposed front-end and we show how the
contaminated signal with severe additive noise is enhanced. Fol-
lowing this, in section 5, the evaluation and the improvement
of the V-U-Based recognizer are presented. This is followed, in
section 6, by the evaluation and the improvement of the V-U-
Based recognizer in noisy environments. Finally, in section 7
we conclude and discuss our results.

2. V-U-BASED FRONT-END

The novel proposed ASR system consists of six major parts:
voiced-unvoiced classification, enhancement of both voiced and
unvoiced components, feature extraction, acoustic/phonetic de-
coding, lexical access, and syntactic analysis. A simplified block
diagram of such a system is illustrated in Fig. 1. These modules
were built within the frame of the HTK-based CSR system [12].

The whole system was designed for noise suppression in con-
taminated speech. Our design is based on the separation of
speech signals into a voiced or an unvoiced part. The V-U deci-
sion [10] was incorporated in the front-end of a large vocabulary
ASR to classify the speech signal, then these two components
were enhanced separately. Our speech enhancement system pro-
vides information on the pitch, the spectral envelope and the
voicing state of each speech segment. We estimate these param-
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Figure 1: Block diagram of the V-U-based CSR system illustrat-
ing how the V-U decision affects both pre-processing and post-
processing stages.

eters and enhance the speech by the modification of such param-
eters in order to account for the presence of the noise which con-
taminated the speech signal. To remove the background noise,
the voiced component is enhanced using anAdaptive Comb Fil-
ter (ACF) [8], whereas the unvoiced component is processed us-
ing aModified Spectral Subtraction(MSS) [1] approach.

3. V-U-BASED ASR

3.1. V-U Classification

First, consider that speech is classified as voiced or unvoiced
on a segment-by-segment basis. Furthermore, consider that the
acoustic-modeling is done at the phonetic level, so that we build
two classes of probabilistic models for individual phones,�v
and�u. If the observed segment is classified as voiced, then
the probabilistic model class for voiced phones,�u, will not be
considered for recognition and vice-versa.

Our algorithm is a modified version of the well known beam
search Viterbi algorithm [11]. In the proposed algorithm, we
reduce the searching space using a beam search which is based
not only on the score of the different paths at a certain instant, but
also on the nature of the nodes, which represent the models of
the individual subword units that have been used, at this instant.
That is, the chosen nodes at each instant are selected based on
the nature of the segments that they present at this instant. To
simplify, we divide the models that can model a speech segment
as follows:

� fVUg = set of phonemes that can be voiced but cannot be
unvoiced.

� fVUg = set of phonemes that can be unvoiced but cannot
be voiced.

� fVUg = set of phonemes that can be either voiced or un-
voiced.

It must be noted that thefVUg set consists of some of the el-
ements of thefVUg set depending on the context. If a seg-
ment of the speech signal is classified as voiced, only the nodes
which present the voiced phone models throughout the FSN are
selected, and similarly for the unvoiced segments. Consequently,
the huge number of nodes of the large vocabulary finite-state net-
work (FSN) is reduced.

3.2. V-U-Based MAP Phonetic Decoder

The task of the phonetic decoder is to extract, from the time
series of the acoustic feature vectors, the sequence of phonetic
symbols they encode. This operation is performed on the basis of
HMMs, where each phonetic unit (phone or allophone) is repre-
sented by a first-order HMM. The decoding function is a matter
of finding the most likely state sequence of the hidden Markov
chain given the observed acoustic feature vectors. This is ac-
complished using a maximuma-posterioriprobability (MAP).
When the V-U decision is included in our recognizer, the above
MAP algorithm is slightly modified by consideringonlysome of
the pathsqi and not all the paths [10].

The algorithm that we used for computing this sequence is a
Listed Viterbi algorithm based on the V-U decision as mentioned
above. Consequently, the huge number of models is reduced by
dividing the whole system HMM allophonic models into two
separate submodels. The benefit is that the number of the mod-
els to be trained decreases exponentially and consequently the
response time needed for the system also decreases since we do
not need to search all models. That is, the incorporation of the
V-U decision in the recognition process serves not only for en-
hancing the corrupted speech and limiting the searching space,
but also reduces the number of allophonic models in a large vo-
cabulary recognizer.

4. EXPERIMENTAL RESULTS

4.1. Database and Platform

In the following experiments the TIMIT database [4] was used.
The data in the TIMIT database was recorded in a clean envi-
ronment. To simulate two different types of noise environments,
both White Gaussian and uniform noises were added artificially
to the clean speech. To study the effect of such noises on the
recognition accuracy of the ASR system that we evaluated, the
reference templates for all tests were taken from clean speech on
the assumption that noa-priori noise characteristics knowledge
was available. Several separate testing sets were chosen from the
available database to evaluate the recognition system. Then, the
noise signal was estimated by the detection of the speech pauses
to evaluate segments of pure noise. Several methods have been
proposed in the literature in order to estimate the noise from the
speech corrupted signal [7].

The baseline system used for the recognition task was a bi- and
tri-phone Gaussian mixture HTK-based [12] system. A modified
version of this system, based on the V-U decision, was trained
using a5-state HMM for each phoneme, to define220 speech
states. A single component Gaussian mixture distribution was
then trained for each state, for a total of about34320 parameters.
All recognition tests were carried out on the test subset of the
TIMIT database. This test set consists of110 sentences, whereas
the training data consisted of380 sentences from the training set
of this database.

4.2. Noise Estimation and SNR Evaluation

After examining many speech files in the TIMIT database, it was
found that the first incoming speech samples of a recording are
related to the noise only. Hence, in our experiments, we esti-
mated the noise signal during the first 100 ms of each utterance
on a frame-by-frame basis. Then, the average signal energy cal-
culated for such a duration is used as the first estimation of the



noise power. After 200 ms, the noise level in a certain subband
is estimated by a statistical analysis of a segment of the magni-
tude spectral envelope. Given a spectral envelope and the corre-
sponding distribution density function in a certain subband, the
most frequently occurring spectral magnitude value is taken as
an estimation for the noise level inside this band. These noise
levels for different subbands are squared and then the average of
these squared values gives the noise power estimate. The noise
power is computed using this histogram method every 100 ms.
More details about such a technique can be found in [7]. Then,
the SNR measure, which is based on a frame-by-frame measure-
ment, followed by an averaging over a speech utterance, is used
to calculate the SNR per utterance. Moreover, these values are
then averaged over all the subsetdr1 of the TIMIT database to
calculate the average SNR for this database.

4.3. Parameter Tuning

A series of experiments at different SNRs, which vary between
30 and 0 dB, have been done in order to determine the optimum
value of the parameters of the MSS speech enhancement system,
� and�, that had been used in the front-end in these experi-
ments. Two types of noise, white Gaussian and Uniform noise,
were alternatively added to the clean speech. The values� = 10
and� = 0:0001 were found to be optimal in such experiments
using the TIMIT database in order to obtain a more enhanced
signal without degrading the naturalness of the speech.

4.4. V-U Classification

The classification of the speech signal into voiced and unvoiced
components provides a preliminary acoustic segmentation of
speech, which is important in our design for both speech en-
hancement and recognition. Different approaches for V-U clas-
sifications were described, studied and compared in [10]. Be-
cause we deal with noisy speech and the ACF used requires a
robust pitch detector to perform the enhancement of the voiced
part of the signal, we decided to choose a V-U classifier which is
based on the robust pitch detection algorithm [9]. After success-
fully determining the pitch period, a voiced-unvoiced decision
was taken, on a frame-by-frame basis, based on a comparison
of the correlation values with an adaptive thresholdT (t) depen-
dent on the level of the correlation between adjacent pitch pe-
riods found for the current segment at that instant as shown in
[9]. The results of such a classification were found to be very
accurate even for boundary segments.

4.5. Parameterization

In order to recognize the continuous speech data that has been
enhanced as mentioned above, 12 MFCCs are calculated on a
30-msec Hamming window advanced by 10 msec each frame.
Then, an FFT is performed to calculate a magnitude spectrum
for the frame, which is averaged into 20 triangular bins arranged
at equal Mel-frequency intervals. Finally, a cosine transform is
applied to such data to calculate the 12 MFCCs as described in
[3]. Moreover, the normalized log energy is also found, which is
added to the 12 MFCCs to form a 13-dimensional (static) vector.
This static vector is then expanded to produce a 26-dimensional
(static+dynamic) vector upon which the HMMs that model the
speech subword units were trained. The static vector is extended
by appending the first order difference of the static coefficients
as described in [5].
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Figure 2: Recognition performance comparison as a function
of the SNR using single mixture biphones when Gaussian and
uniform noises are added to the clean data for different SNR
levels.

5. EVALUATION AND IMPROVEMENT OF THE
V-U-BASED RECOGNIZER

Applying such scheme to the TIMIT database and carrying on
some experiments proved that the recognition accuracy dropped
compared to the scheme which uses the Viterbi searching al-
gorithm based on high score pruning. This is due to: (1) V-U
classification errors and (2) the devoicing of some phonemes de-
pendent on the context. To solve the problem resulting from the
misclassification of the speech signal, we proposed to give spe-
cial care to the boundary segments. This is implemented simply
by considering these frames neither voiced nor unvoiced and no
pruning is performed, based on the voicing decision for such
frames. That is, for such frames all the models, either voiced or
unvoiced, were checked and the path that produced the high-
est score was selected. Doing such a solution, we overcome
all the errors that can result from the V-U misclassification er-
rors. The second problem which resulted from the devoicing of
some voiced phonemes is solved by adding voicing/devoicing
phonetic rules [6]. Some rules depend on the context; however
for phones, there is no available information about the depen-
dency of such phonemes on the context. Consequently, two dif-
ferent solutions were proposed to solve the problems for context-
independent and -dependent phones, respectively.

For context-independent phones, the models of the phones which
are sometimes devoiced either partially or completely, depend-
ing on the context [2] were defined as neutral models, i.e.,
these models are used for both voiced and unvoiced segments of
speech, independent of the classification decision. On the other
hand, for context-dependent phones, the voicing/devoicing pho-
netic rules mentioned above were included in our algorithm and
the search is implemented depending on such rules. Combining
all the above solutions led to obtaining the same accuracy com-
pared to the original system with a reduction in the search space,
while reducing the search complexity.

6. EVALUATION AND IMPROVEMENT OF THE
V-U-BASED RECOGNIZER IN NOISE

Applying the overall proposed recognizer to the noisy version
of the TIMIT database, i.e., after adding both Gaussian and uni-
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Figure 3: Recognition performance comparison as a function
of the SNR using single mixture triphones when Gaussian and
uniform noises are added to the clean data for different SNR
levels.

form noise to the clean signal under different SNRs, which vary
between almost 4 and 20 dB, and carrying on some experiments
proved that the recognition accuracy has increased significantly
as shown in Figures 2 and 3. These figures illustrate the com-
parison of the recognition performances obtained by the V-U-
based and the baseline system using mono-, bi- and tri-phones
as speech units respectively, when both Gaussian and Uniform
noises were added to the clean speech for different SNR levels
which vary between from almost 4 to 20 dB. It is clear from
these figures that the V-U-based HTK recognizer outperforms
the baseline HTK system and renders the recognition process
more robust to additive channel noise. The relative changes in
the word correctness rate,CWrd, when using our proposed sys-
tem for testing on a subset of the TIMIT database using sin-
gle mixture monophones over the baseline HTK, are 18.91%,
28.70% and 62.27% when combating additive Gaussian noise
(AGN) for 19.30 dB, 15.91 dB and 11.50 dB SNR levels and
16.83%, 23.19% and 91.38% when combating additive uniform
noise (AUN) for 19.58 dB, 15.01 dB and 10.68 dB SNR lev-
els respectively. For right-context (RC) biphones, the relative
changes inCWrd are 9.84%, 12.97% and 31.09% when combat-
ing AGN for 19.30 dB, 15.91 dB and 11.50 dB SNR levels and
9.90%, 18.85% and 32.64% when combating AUN for 19.58 dB,
15.01 dB and 10.68 dB SNR levels respectively. For triphones,
the relative changes inCWrd are 7.23%, 13% and 23.61% for
the AGN case and 8.39%, 12.22% and 29.81% for the AUN case
for the same SNRs as the above tests.

7. CONCLUSION

In this paper, a method of incorporating a V-U decision for a
large-vocabulary continuous speech recognizer in noisy environ-
ments has been developed, in which we proposed a new front-
end analyzer and a new Viterbi beam search decoding architec-
ture that are based on the V-U decision. This decision, which
is used as a preliminary method of recognition, adds more con-
straints to the recognition process. Therefore it was helpful in
limiting the search complexity represented in calculation (num-
ber of computations) and time. Within the frame work of the
HTK, we built such a recognizer which produced, for clean
speech, the same performance as the original one which uses the

classical Viterbi algorithm, whereas for noisy speech this recog-
nizer outperforms the original one even for low SNRs.

We are currently continuing the effort towards modifying the
unvoiced component enhancement approach using an iterative
technique such as Wiener filters. Also, the inclusion of a third
class (silence) could be very helpful in the enhancement process
by attenuating totally the noise in silence regions. This could
also reduce the search space further, by considering three cate-
gories for the nodes that must be searched throughout the FSN.
Finally, the way that we include the V-U decision in our search-
ing algorithm could be changed, i.e., the implementation could
be different, which can help in reducing the complexity and get-
ting more accurate performance.
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