
A GENERIC METHODOLOGY FOR THE SOFTWARE MANAGING
OF CACHES IN MULTI-PROCESSORS DSP ARCHITECTURES

Application to the real-time implementation of low level image processing on the TMS320C80

Frantz LOHIER1,2, Lionel LACASSAGNE1,2 Pr. Patrick GARDA2

1Electronique Informatique Applications 2Laboratoire des Instruments et Systèmes
Burospace, Bâtiment 4, Université Pierre et Marie Curie

Route de Gisy 4 place Jussieu - B.C. 252
91571 Bièvres Cedex, FRANCE 75252 Paris Cedex 05, FRANCE

eia@wanadoo.fr lohier | lacassagne | garda@lis.jussieu.fr

ABSTRACT
This article introduces a novel software engineering
methodology designed for the real-time execution of low-level
image operators running on multi-processors DSP architectures.
We detail the results we gained while implementing our
approach on the TMS320C80, a shared memory multi-
processors architecture [1]. Our contribution compares to other
existing C80’s image processing libraries [2][3] in terms of
genericity, flexibility, and performance improvement. More
specifically, generic mechanisms allow to address various
operator’s requirements as well as expanding them using a
standard framework. Our approach is flexible enough to allow
for the dynamic composing of concurrent and reconfigurable
processing chains thanks to a modular library implementing
basic operators. Processing chains work on various image sizes
and with any number of processors. Above all, our methodology
permits performance improvement by enhancing data locality.

1. INTRODUCTION
Whereas any modern RISC architecture includes a data cache,
general purpose internal data memory combined with DMA co-
processor(s) often stands as a more predictable and efficient
alternative for the DSPs. However, DMA co-processors are
getting more and more complex and now feature sophisticated
multi-dimensional data transfers like for the C80 [1] or the C6X.
Whereas programming them becomes more difficult, software
tools and techniques are lacking. This paper introduces an
original methodology for the software managing of caches based
on a multi-dimensional DMA and targeting for multi-processors
DSP architectures. Seeking the real-time execution of generic
low-level image processing algorithms has led us to formalize
basic entities we describe in the next section. Then in section 3,
we introduce how entities’ instances are combined to implement
flexible processing chains. Finally, section 4 details some
performances gained with our novel C80’s library.

2. GENERIC METHODOLOGY
Our methodology defines a software engineering framework
built upon well defined entities and rules to manipulate and
extend them. We first review these entities.

2.1 Buffers

In our image processing context, a buffer stands as a ROI
(Region Of Interest) with which 8 parameters are associated
including the width Wref, the height Href, the physical location
(@BUF) and the width pitch Wpitch. Wpitch allows us to address
any 2D image sub-area without requiring an extra transfer to
isolate the region. Since direct external memory addressing is
very costly on the C8X (10∼15 cycles per access in the best
case), the DMA is used to download a specified amount of data
in internal data memory where processing can take place much
faster (1 cycle per access). In a software manner, we need to
manage a cache per buffer with which 2 more parameters are
associated: the location of an internal memory area for caching
purpose (@CACHE[0]) and the size S of this area. Temporally
speaking, if we now think of overlapping raw computation with
the transfer of the next bunch of data to be treated, we need to
implement the double buffering technique which requires a
second cache location (@CACHE[1]). This approach is
meaningful thanks to the C8X’s crossbar which prevents
contention between processing and transfer when distinct
internal memory banks are used. The last parameter, σ, stands as
the number of processors used to partition buffer’s data towards
an SPMD processing scheme.

2.2 Processing node

A processing node is a function executing one or several
iterations of an algorithmic operator. A sequence of nodes
implements a processing chain which consume and produce data
from and to buffers. Nodes execute on the C80’s advanced DSPs
or PPs for Parallel Processors and are written in assembly
language that is mandatory to achieve reasonable performance.

2.3 The processing template

The processing template runs on each PP and aims at
encapsulating the synchronization and handling of DMA data
transfers with the launching of nodes.

2.4 Data templates

Data templates or templates are entities associated with
operators. They gather parameters describing the input and
output structuring element for a processing node. We now give
more insight on these parameters.

• Basic parameters and optimization issues

A n×m convolution mask would stand as the input template of a
convolution node (Wt=n, Ht=m) whereas 1×1 would correspond
to the output geometry. The input geometry will allow us to
ensure that enough data are transferred in internal memory for at
least one processing iteration. This can be dependent on the
operator’s implementation itself. Focusing on 2 major
optimization techniques which are loop unrolling and the use of
SIMD operations, the initial template is maximized to meet the
fact that several horizontal or vertical iterations of an operator
are computed in parallel. If two horizontal iterations of the
convolution operator are treated in parallel, the input and output
geometry are changed to (n+1)×m and 2×1 respectively.

To download an amount of data consistent with the vertical and
horizontal quantity required to execute a new iteration of the
optimized node in either of these directions, we introduce the
horizontal and vertical steps. For our n×m convolution example,
the horizontal and vertical steps are Ws=1 and hs=1 respectively
whereas they would be defined as Ws=2, hs=1 in the optimized
case. Of course, nothing prevents the implementation of a node
to take into account the non multiple cases ((Wref-Wt) mod Ws ≠
0) but on the one hand, the implementation gets more
complicated thus longer (emphasized by the fact that PP’s VLIW
algebraic assembly is difficult [1]) whereas on the other hand,
the increased granularity favors instruction cache contention
which is likely to decrease performance. This last remark depicts
a phenomenon which much depends on the overall granularity of
a chain and on the number of cache blocks required by the
processing template itself. As an example, a binary NOT node
shows a 30% drop of performance on a 5122 image when one
instruction cache block is reloaded per DMA request.

• Overlapping templates

Overlapping templates defined by Wt>Ws and/or Ht>Hs require a
deeper analysis. Since data are brought using multiple DMA
requests, we need to cope with template’s pixels that are shared
between 2 requests (Figure 1). We can either reload the data or
introduce a more subtle mechanism where the node is
responsible for launching the next bunch of input data once the
re-using of the previous data completed. The first approach is
preferred because it simplifies the node (smaller granularity) as
well as the implementation of such a mechanism in a multi-node
context. Furthermore, since overlapping templates are generally
associated with complex nodes (e.g. convolution) for which
processing is usually slower than transfer, longer transfers have
little impact on the global processing duration. The pair (Wt,Ws)
and\or (Ht,Hs) are then used to calculate the amount of data
reloaded per direction, set equal to Wt-Ws\Ht-Hs.

Another issue that arises when dealing with convolution node is
linked with the overwriting of the center data by the convolution
result. This renders the next iteration calculus erroneous.
Considering the concurrent transfer of the next DMA request, an
intuitive approach suggests using a third memory bank to output
the results while triple buffering. Offsetting the result as shown
with Figure 1 is a much simpler alternative.

1st DMA req.

2nd DMA req.

Reloaded
data (Ht-Hs)

Wref

Href

BU FFER:

CACHE (size S): input data are overwritten :

Templates (Wt=Ht=3,Ws=Hs=1) Input DMA
request

Output DMA
request

Prev. kernel
result

Offset kernel
result

Figure 1: Data reloading and results offsetting

• Sweeping internal and external data

C80’s DMA allows separate settings for the source and
destination of a transfer. Thus we can efficiently de-correlate the
way data are swept in the buffer compared to this in internal
memory where data are organized linearly (to ease the linking of
nodes). This feature is notably interesting for separable filters for
which the same node is used whether the image is scanned
vertically or horizontally. Moreover, we can think of color
images for which buffer’s data alternate the coding of different
color components. To pinpoint the luminance component of a
YUV buffer for example, we introduce 2 more parameters which
are the data size Ds and the data pitch Dp. The multidimensional
feature of the DMA allows practical data filtering and permits
the same node to process interlaced or consecutive data. This
discussion suggests the need for an external template geometry
(upper-case Wt ×Ht, Ds, Dp, Ws, Hs) which stands as the external
counterpart of a node’s internal input\output template used when
sweeping its associated input\output buffer. Internal input (I) and
output (O) template parameters are designated in lower-case. We
also define an internal data size and pitch (ds,dp) to allow
reserving space between 2 data in internal memory. This simplify
the implementation of nodes that expand the initial data size. The
following table shows the diversity of templates configurations:

Node’s name Input template:

wI
t×hI

t,d
I
s,d

I
p, w

I
s, h

I
s

Output template:

wO
t×hO

t,d
O

s,d
O

p,w
O

s,h
O

s

Optimization

Histogram 1×1,1,1,1,1 None

FGL 1st order IIR 2×1,1,1,1,1 1×1,1,1,1,1

Binary NOT 4×1,1,1,4,1 4×1,1,1,4,1 SIMD

3x3 convolution 4×3,1,1,2,1 2×1,1,1,2,1 SIMD

Robert’s gradient 5×2,1,1,4,1 4×1,1,1,4,1 SIMD+unrolling

Trunc. 4×1,2,2,8,1 4×1,1,1,4,1

2.5 Building chains

Once nodes and buffers parameters are known, we can compose
generic processing chains. This is based on a high level
description of the chain. Then, our library features advanced
mechanisms to parse the description while transparently
generating all the DMA requests further used by the processing
template. The next section details this important step.

3. FLEXIBLE DMA PROGRAMMING

A flexible implementation of the methodology requires to
integrate numerous parameters with the aim of splitting the
buffer’s data in a SPMD fashion and deriving the DMA requests
for all buffers and processors. Here, performance depends on a
near optimal solution.

3.1 The basic constrained system

If we focus on the reload approach that’s been implemented, the
total amount Q of data to be transferred is a function of (β,γ)
which corresponds to the combined number of horizontal and
vertical occurrences of a template that can fit in a cache of size

S-a×b with
()







===×−+=
===×−+=

sstpts

sstpts

HDWCHBDWDA

hdwchbdwda

,,,)1(

,,,)1
. The

pair (β,γ) is the key towards the calculation of the total number
of DMA requests for a buffer and hence, their intrinsic settings.

(β,γ) must verify (Ψ)=
()()

 
 








−+=≤+

−+=≤+
<+++

)/)((

)/)((

1

DBHDBHDB

CAWCAWCA

Sadcdab

ref

ref

γ
β

γγβ
 and

hence yield a total amount of transferred data Q equal to:

() () HW
D

BH
DBCA

C

AW
WCA

C

AW
H ×+








−−−








−








−−++−








−−

1)(11
γββ

.

Q, is then used calculate the total number of DMA requests that
we split among σ given processors. For simplicity, the former
equations assume Dp=Ds, A≤C, B≤D. Experiments show that the
less DMA requests the faster the processing which in terms of
linear programming implies minimizing the objective function

cdadcdabS βγγβ +++− . If we consider a chain gathering a

single node connected to an input and output buffer, since our
model is synchronous, we need to find (β,γ) that is compatible
with both input and output templates and the related buffer
parameters. We face a non-linear integer programming system
which was proven to be NP-complete. We use a simple and fast
heuristic which coarsely consists in getting β based on W and
then deriving γ. The next section details how β and γ are
calculated in a more general context.

3.2 Multi-node chains and synchronization constraints

Some nodes are directly associated with buffers and hence can
be seen as leaders of paths gathering nodes that synchronize
with them. On Figure 2, we enumerate 3 paths (N0,N1,N2),
(N1,N2) and (N2) respectively associated with leading template

]1[

1

]1[

2

]1[

1

]0[

0 ,, IIII pppp = . In order to find (β,γ) per buffer, we

first look for a virtual template which satisfies the minimum
number of input data for a path. For each buffer linked with a
leading node, we then deduce a couple (β,γ). Among all couples,
we finally select the smallest β and γ.

Composing a chain can be seen as connecting an input template
k with the output template of a previous node (k-1) keeping in
mind that nodes may feature various data processing rates.

N0 N1 N2
p0

O[0] p1
I[0]S1,P0

I[0] p1
O[0] p2

I[0]p0
I[0]

p1/2
I[1]

p1
I[2]

[]
[]





=

=
][][][][][][][

][][][][][][][

jI

ks

jI

ks

jI

kp

jI

ks

jI

kt

jI

kt

jI

k

jI

ks

jI

ks

jI

kp

jI

ks

jI

kt

jI

kt

jI

k

HWDDHW

hwddhw

P

p

S0,P1/2
I[1]

S2,P1
I[2]

P2
O[0],S3

Input buffers:

Output buffer:

Node

Internal template

External template

Cache size

Template
parameters:

p2
O[0]

Figure 2: A complex chain

This suggests satisfying independent synchronizing constraints
for the vertical and horizontal amount of data required between 2
nodes. Hence, we need to solve 2 diopantine equations of the

form O

k

OO

k

I

k

II

k caca 11 −− ×+=×+ ββ solved thanks to Bezout’s

equality. Solutions appear as simultaneous congruences
()kk

I

k Φ′′≡φβ , ()111 −−− Φ≡ kk

O

k φβ and are propagated such that they

affect both the input and output template of a node. This keeps
constant the possible difference of rate between the 2 node’s
templates. Then the next connection in the chain implies solving

O

k

O

k

O

k

I

kkk

I

k

I

k caca 111)(−−− ×+=×+Φ+ βφβ with (k=k-1).

This explains how virtual template parameters are estimated. For
each path c linking K nodes with L being the leading node’s
index, we successively calculate with k=[K-1..L], the pairs
(βI,βO) and (γI, γO) ∈ Ν+ from which we get Φ and Γ such that:

0

11

11

1111

1111
r

=















⋅








−+Γ−
−+Φ− −−

−−−−

−−−− I

k

I

k

O

k

O

k

O

kk

I

k

I

kk

I

k

O

k

O

kk

I

k

I

kk

I

k

O

k

bdbdd

acacc
γβ
γβ

τ
φ .

Here, solutions for the height synchronization take the form of

() ()111, −−− Γ≡Γ′′≡ kk

O

kkk

I

k τγτγ and the initial conditions are

0 ,1 1111 ===Γ=Φ −−−− KKKK τφ . Once O

L

O

L γβ , are gained we

then calculate (β,γ) starting with an estimation of the total
number of internal templates that can fit in internal memory. For

the J buffer(s) linked with internal template][jI

Lp (j=[0..J-1]), we

evaluate  vvv cabS /)/(1 −+=ξ . Here, S is related to the

buffer linked with current][jI

Lp and v indices describe the

virtual template parameters gained with:

()








×Γ=×+=
×Φ=×−×++=

======

sLvsLtv

sLvppsLtsv

jI

Lss

jI

Ltt

jI

Lpp

jI

Lss

jI

Lss

jI

Ltt

hdhhb

wcddwwda

hhhhddddwwww

,

,1/

,,,,,][][][][][][

τ
φ .

Then, with Av and Cv based on][jI

LP that translate from the same

rules, we evaluate
vvref CAW /)(−=β and

()




×+=
−+=

vv

vv

caw

ca

β
ξθ 1

 leading to 






 −×
+=

v

vv

d

bwb /
1

θ
γ .

Here, equations are simplified and imply w≥θ. They must also
satisfy (Ψ) set of inequalities (§3.1).

Symmetrically, the same overall approach is used to get (β,γ)
couples from the output buffer point of view spreading the
multiplicity constraints with k varying from 0 to L. Then, once
we gain (βmin,γmin), the total number of DMA requests is

calculated per buffer with O

L

O

L Φ+= minβφβ and O

L

O

L Γ+= min γτγ .

The various DMA dimensions are then optimized such that the
DMA request self-modify (pinpoints the next Ds data or the next
image line with Wpitch and handles the internal double buffering
that “ping-pong” on the 2 @CACHE addresses). This all
happens without intervention from the processing template
which greatly favors instruction cache coherency.

4. PERFORMANCE RESULTS

This section presents the performances we gained with 3 sample
processing chains. We used a sub-optimal C80 hardware
configuration based on an external DRAM memory featuring 3
cycles per column for reads and 2 for writes and a 40 Mhz clock
frequency (using SDRAM would reduce access time to 1 cycle
and the frequency could be raised to 60 Mhz). Runtime
modification of σ, Wref, and S allowed detailed performance
analysis.

Figure 3 shows the processing duration of a single binary NOT
node while varying σ (1..4), Wref (H=W), and S. Each surface is
then associated with a number of PP assigned to processing in a
SPMD fashion (each PP caches its own strip of input buffer).
Here, the more PP, the lighter the surface. The estimated transfer
duration is 2×5122×2.5/40 Mhz=3.2 ms. 4.7ms were measured
with 1 PP which slightly increased if more PP were acting in
parallel. Here, processing is faster than data transfers and since
the DMA is a shared resource, adding more PP increases
contention. Still the result we gained is as good as what is
obtained in [5] (4.3 ms) with a comparable hardware
configuration.

Experiments with an optimized 3×3 convolution confirmed that
the reload approach has almost no impact. We measured µ=48
ms for a 5122 image with 1 PP. The node’s kernel requires 14
cycles for 2 pixels that we compare to 15 measured based on
2×µ×freq×σ/W×H. When σ=4, µ=13 ms yields to an effective
kernel of 16 cycles per PP. Transferring the input and output
amount QI+QO itself requires 8 ms. Thus, theoretical
performance are very close to what is measured despite
extraneous transfers.

We now look at a more complex chain gathering 4 statistical
nodes aimed to find the min-max, sum (average), sum of power
(variance), and number of data below a threshold. When all PPs
execute the entire chain in a SPMD mode, acceleration with 4
PPs is 237% (σ=1\4, S=2048, W=H=512⇒27\8 ms). Figure 4
shows that the cache size is a deciding factor towards
performance prediction and that, in our example, small cache
size can quadruple the processing time (σ=1, S=2048\256,
W=H=512⇒32\4 ms). When we split the chain to 4 single-
nodes each of which is assigned to execute on a dedicated PP
(MPMD scheme), we measured a duration of 15ms (σ=4,
S=2048, W=H=512). This illustrates that enhancing data
locality, indeed, improves performance.

Figure 3: NOT node

Figure 4: Statistical chain

5. CONCLUSIONS
In the context of multi-processors DSP architectures, we
introduced an original software engineering methodology for the
real-time implementation of generic low-level image processing
chains. In section 2, we introduced the generic description of
basic operators while stressing cache management issues. In
section 3, we detailed an algorithm which permits the practical
implementation of flexible processing chain using an advanced
DMA. We then reviewed experimental performances gained
while implementing our approach on the TMS320C80.

Within 6 months, we have written more than 50 image
processing nodes. This high productivity results from genericity,
flexibility and automatic DMA management. Moreover, code
optimization [4] and accurate prediction lead to real-time
execution of complex chains. This demonstrates that genericity
and performance do not oppose and raises our methodology as
an attractive alternative to RISC programming techniques that
improve data locality and predictability [5][6].

[1] TMS320C8X System-Level Synopsis, Texas Instruments
SPRU113b.

[2] Y. Kim, Washington University C80’s image processing library,
http://icsl.ee.washington.edu/projects/iclib

[3] Matrox Genesis library, http://www.matrox.com
[4] Jihong Kim, Graham Short, Performance evaluation of register

allocator for the advanced DSP of TMS320C80. Proc of
ICASSP’98

[5] M. Lam, E. Rothberg, M. E. Wolf. The cache performance of
blocked algorithms. Proc. of ASPLOS IV, Apr. 1991.

[6] O. Temam, E. Granston, W. Jalby “To copy or not to copy:
a compile-time technique for assessing when data copying
should be used to eliminate cache conflicts”. Proc. of
Supercomputing’93 (ACM), nov. 1993.

