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ABSTRACT

In this paper, we address the problem of the separation of convo-
lutive mixtures in the case where the non Gaussian source signals
are not necessarily filtered versions of i.i.d. sequences. In this
context, we show that the contrast functions, used in the linear pro-
cess source case, still allow to separate the sources by a deflation
approach. Some particular properties of higher order cumulants
based contrast functions are also given.

1. INTRODUCTION

The field of blind source separation has raised growing interest in
the last decade. In this context,M non observable, mutually inde-
pendent non Gaussian source signalss(n) = [s1(n); � � � ; sM (n)]
are mixed by anunknownN�M (N �M ) linear and time invari-
ant filterH (z) =

P
k2ZZH(k)z�k to give aN–variate observed

signal

y(n) =
X
k2ZZ

H(k)s(n� k) = [H(z)] s(n) (1)

The components ofy(n) can be, for example, the signals received
on an array ofN sensors. The blind source separation problem
consists in recovering, from the observationy(n); the contribution
of each source on each sensor, i.e. signalsck;l(n) = [Hk;l(z)]sl(n)
for k = 1; � � � ; N andl = 1; � � � ;M .

This problem was mainly investigated under the hypothesis
that the source signals are non Gaussian, independent and identi-
cally distributed (i.i.d.) sequences. In this case, it is possible to
recover each source signalsl(n), up to a delay and a scaling factor
by minimizing a contrast like function (see e.g. [6, 9, 2, 7]). In
order to retrieve the signalsck;l(n) for eachk and l, [10] pro-
posed to use the following scheme : having an estimateŝl(n)
of source signalsl(n), signalck;l(n) = [Hk;l(z)]sl(n) is esti-
mated as the filtered version[Ĥk;l(z)]ŝl(n) of ŝl(n) for which
Ejyk(n)� [Ĥk;l(z)]ŝl(n)j

2 is minimum w.r.t.Ĥk;l(z).
As remarked in [10], these approaches can be extended to the

case where the source signalssl are non Gaussianlinear processes,
i.e. filtered versions of i.i.d. sequenceswl. In effect, the above
procedures allow to retrieve estimatesŵl of wl; each estimate of
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ck;l(n) = [Hk;l(z)]sl(n) is then built by seeking the filtered ver-
sion ofŵl which is closest toyk(n) in the mean square sense.

However, the hypothesis that each source signal is a linear
process is rather restrictive. We note indeed that most of station-
ary signals can be represented as the output of a filter driven by a
decorrelated, but not necessarily i.i.d. sequence. For example, in
the context of digital communications, the output of an error cor-
recting encoder driven by an i.i.d. sequence is often a decorrelated
but not an i.i.d. sequence. Our purpose is to deal with the source
separation problem in the case where the source signals are non
Gaussian signals which do not necessarily coincide with filtered
versions of i.i.d. sequences. Some previous works have addressed
this case by using various techniques (e.g. [11, 8, 3]). The purpose
of this study is to show that the approaches based on the optimiza-
tion of a contrast function do work when the deflation approach
(introduced in the linear process case in [6] and developed in [9]
where it is called iterative) is used. Our results thus legitimate the
use of contrast functions for separation of convolutive mixtures in
fairly general cases.

This paper is organized as follows: in section 2, we adapt the
classical definition (see [5]) of a contrast function to our purpose
and provide some important examples. In section 3, we explain
how the maximization of a contrast function allows to solve itera-
tively the blind source separation problem. In section 4, we study
more specifically the contrast function defined as the squared kur-
tosis; we show that, as in the case of linear process source signals
([6, 9]), this contrast function does not show spurious local maxi-
mum. Finally, some simulation examples are given in section 5.

2. CONTRAST FUNCTIONS: DEFINITIONS AND
EXAMPLES

LetX be a set of non Gaussian scalar random variables.

Definition 1 A contrastC onX is a mapping fromX to IR+ sat-
isfying the following assumptions :

(i) For eachx 2 X , C(x) depends only on the probability
distribution ofx.

(ii) Let (xi)i=1;m (eventuallym =1) bem independent (but
not necessarily identically distributed) random variables of



X and let(ai)i=1;m bem coefficients such that
Pm

i=1 aixi
belongs toX . Then,

C(
mX
i=1

aixi) � max
i=1;m

C(xi) (2)

(iii) Equality holds in (2) if and only ifai = ai0�(i� i0) where
i0 denotes one of the indices for whichmaxi=1;m C(xi) =
C(xi0).

We note that this definition differs from that of Donoho [5] only
in that we do not require the sequence(xi)i=1;m to be identi-
cally distributed. Consequently, it is not surprising that most con-
trast functions used in the one-input / one-output blind deconvo-
lution context still satisfy the requirements of definition 1. For
example, it can be easily proved (see [5, 1]) that the opposite
of the Shannon entropy, defined by�S(x) = E[log px(u)] =R
px(u) log px(u)du, is a contrast function on the setX1 of all

unit variance random variables. Another example, motivated by
ref. [7], is the following : let� be a convex increasing function
admitting a unique global minimum onIR+, denote by cumq(x)
the orderq (q > 2) cumulant ofx and byX10 the subset of all
x 2 X1 for which cumq(x) 6= 0. Then,C�(x) = �(jcumq(x)j) is
a contrast function on the setX10.

3. APPLICATION TO THE DEFLATION APPROACH
FOR SOURCE SEPARATION

We first recall that the principle of the deflation approach consists
in extracting the sources one by one. More precisely, a1 � N
filter g(z) is first computed in such a way that the scalar sig-
nal r(n) = [g(z)]y(n) coincides with a filtered version of one
of the source signals, says1(n). The following step consists in
finding aN � 1 filter t(z) for which the variance of the signal
~y(n) = y(n) � [t(z)]r(n) is minimum. As signalr(n) is sup-
posed to be independent on signalssl(n) for l 6= 1, it is clear that
each component[tk(z)]r(n) of [t(z)]r(n) coincides with the con-
tribution [Hk;1(z)]s1(n) of s1(n) on thekth sensor. Therefore,
~y(n) is a convolutive mixture of signalssl(n) for l 6= 1. The same
procedure can be applied to signal~y(n) to extract the contribution
of a second source signal on each sensor. All other sources are
extracted by iterating this scheme.

[6, 9, 10] showed that, if the source signals are linear pro-
cesses, the maximization of a normalized cumulant ofr(n) =
[g(z)]y(n) allows to extract a particular filtered version of one
of the source signals: the source generating i.i.d. sequence. The
above iterative approach can thus be used to solve the blind source
separation problem in the linear process source signal case.

We now extend these results to the case where the source sig-
nals are not filtered versions of i.i.d. sequences. As we seek a
filtered version of the sources, we can assume, without any re-
striction, that eachsl(n) is a unit variance, centered and decorre-
lated (but not i.i.d.) sequence. Iff(z) = [f1(z); : : : ; fM(z)] =P

n2ZZ f(n)z
�n is a1�M filter, let us denotekfk =�P

n2ZZ f(n)f(n)
�
� 1
2 its L2 norm. LetC be a contrast function

defined on the setX1 of all unit variance random variables. Then,
we have the following result:

Theorem 1 Assume that, for each,k = 1; � � � ;M ,

sup
kfkk=1

C([fk(z)]sk(n)) < +1 (3)

and that there exists at least one functionfk;� in the unit sphere of
L2 for which1

sup
kfkk=1

C([fk(z)]sk(n)) = C([fk;�(z)]sk(n)) (4)

Be g(z) any 1 � N filter for whichE([[g(z)]y(n)]2) < +1 ,
denoter(n) = [g(z)]y(n) and consider the following function:

� : g(z) 7! C[
r(n)p
E(r2(n))

] (5)

Then, the global maximum of� is finite and is reached by at least
one filter, sayg�(z): More importantly, the corresponding scalar
signal r�(n) = [g�(z)]y(n) is a filtered version of one of the
source signals.

Proof. We first remark thatr(n) can be written asr(n) =
[f(z)]s(n), wheref(z) is the1 � M filter defined byf(z) =
g(z)H(z). As the source signalssk(n) are assumed to be unit
variance and decorrelated, the spectral density matrix of theM–
variate signals(n) is reduced toIM (i.e. theM � M identity
matrix). Hence,E

�
r2(n)

�
= kfk2. The normalized random vari-

able r(n)=
p
E(r2(n)) thus equals[f(z)=kfk]s(n). Therefore,

maximizingC[r(n)=
p
E(r2(n))] with respect tog(z) is equiva-

lent to maximizingC([f(z)]s(n)) over the set of1�M unit norm
filtersf(z).

Let f(z) = (f1(z); : : : ; fM (z)), kfk = 1, be a unit norm
1�M filter . Then2

[f(z)]s(n) =

MX
k=1

kfkk

�
fk(z)

kfkk

�
sk(n)

Putrk(n) =
h
fk(z)
kfkk

i
sk(n). Then, it is clear that the(rk(n))1�k�M

are independent unit variance random variables. Therefore, by
item (ii) of Definition 1,

C([f(z)]s(n)) � max
1�k�M

C(

�
fk(z)

kfkk

�
sk(n)) (6)

Let�k;� < +1 be defined as�k;� = supkfkk=1 C([fk(z)]sk(n))
and denote byfk;� one argument of this maximization problem.
Bek0 such that�k0;� = max1�k�M �k;�. Then, we claim that

sup
kfk=1

C([f(z)]s(n)) = �k0;� (7)

To show this, we first remark that, for each unit norm1�M filter
f(z),

C([f(z)]s(n)) � max
1�k�M

C(

�
fk(z)

kfkk

�
sk(n)) � �k0;�

Let f�(z) be the1 � M unit norm filter defined byf�(z) =
(0; : : : ; 0; fk0;�(z); 0; : : : ; 0). Then,C([f�(z)]s(n)) = �k0;�.
So, (7) holds.

1AsL2 is an infinite dimensional set, this hypothesis is not necessarily
fulfilled, even for a regular functionC, simply because the unit sphere of
L2 is not compact. However, this assumption seems reasonable.

2the random variable
h
fk(z)
kfkk

i
sk(n) should be considered null if

fk(z) = 0



In order to complete the proof of the theorem, it remains to
establish that iff 0�(z) is an another1 � M unit norm filter that
verifies

C([f 0�(z)]s(n)) = �k0;� (8)

then all the components off 0�(z) but one are zero. For this, we
remark that

C([f 0�(z)]s(n)) � max
1�k�M

C(

"
f 0k;�(z)

kf 0k;�k

#
sk(n)) � �k0;�

Therefore, identity (8) implies that

C([f 0�(z)]s(n)) = max
1�k�M

C(

"
f 0k;�(z)

kf 0k;�k

#
sk(n))

As [f 0�(z)]s(n) =
P

1�k�M kf 0k;�k[
f 0k;�(z)

kf 0
k;�

k
]sk(n), this holds if

and only if all coefficients(kf 0k;�k)k=1;M but one are zero (see
item (iii) of Defintion 1), i.e. iff the signal[f 0�(z)]s(n) is a filtered
version of a single source signal�

This shows that, under the assumptions (3) and (4), it is possi-
ble to extract filtered versions of the source signals by the deflation
approach introduced in [6] and [9]. We feel that these ideas cannot
be generalized to non iterative source separation approach based
on a contrast function (such as [2]). Due to the lack of space, we
do not discuss this point here. Finally, we note that our results
can be extended straightforwardly to the complex valued signals
case. In particular, the numerical results presented in section 5 are
obtained in the complex case.

4. PROPERTIES OF THE CONTRAST FUNCTION
CUM2

4 (X)

If the source signals are linear processes, the contrast functions
defined from the normalized cumulants are attractive because they
are free of spurious local maxima [9]. In this section, we show
that this property remains valid in our more general context. With-
out restriction, we work on the setX10 of all unit variance ran-
dom variables having non zero fourth-order cumulants. Hence,
the square of the normalized fourth-order cumulant coincides with
functionC2(x) = (cum4(x))

2. This contrast is relevant in our
context if, for eachk, �(2)k;� = supkfkk=1 C2([fk(z)]sk(n)) is non

zero. This extra assumption is assumed from now on3. We now
state the following result:

Theorem 2 Beg(z) any1�N filter for whichE([[g(z)]y(n)]2) <
+1 , denoter(n) = [g(z)]y(n) and consider the following func-
tion:

� : g(z) 7! C2[
r(n)p
E(r2(n))

] (9)

Let g�(z) be a local maximum of (9). Then, the signalr�(n) =
[g�(z)]y(n) is a filtered version of one of the source signals.

Proof As in the proof of theorem 1, we setf(z) = g(z)H(z),
and remark that the study of the local maxima of (9) is equiva-
lent to the study of the local maxima of the restriction to the unit
spherekfk = 1 of the function	(f) = C2([f(z)]s(n)). In order
to study the maxima of	 on the unit sphere, we first give the fol-
lowing lemma which is an immediate generalization of a result of
[3].

3our procedure is still relevant if one of the�(2)k;� is zero

Lemma 1 Let (rk)1�k�M beM independent unit variance ran-
dom variables among which at least one has a non zero fourth
order cumulant. Let us consider the function� defined on the
unit sphere ofIRM by �(a) = C2(

P
1�k�M akrk) wherea =

(a1; : : : ; aM). Then, the local maxima of� are the vectorsa�
given byak;� = ��(k � k0), wherek0 is any index for which
c4(rk0) 6= 0 .

We now prove Theorem 2. Letf�(z) be a local maximum of	

restricted to the unit sphere. Chooserk;�(n) =
h
fk;�(z)

kfk;�k

i
sk(n)

anda� = (a1;�; : : : ; aM;�) = (kf1;�k; : : : ; kfM;�k) (recall that
rk;�(n) = 0 if fk;�(z) = 0). We first note that the fourth order
cumulant of the variablerk;�(n) cannot be zero for allk, other-
wise,	(f�), which is a local maximum, would be equal to0. Let
�� be the function defined on the unit sphere ofIRM by

��(a) = C2(
X

1�k�M

akrk;�(n))

As f�(z) is a local maximum of	, the vectora� is a local maxi-
mum of��. By lemma 1,ak;� = ��(k � k0), i.e. all the compo-
nents off�(z) but one are identically zero.�

The reader may check that these results still hold ifC2(x) =
(cum4(x))

2 is replaced with�(jcum4(x)j), where� is a convex
increasing function admitting a unique minimum at0. The results
of this section also easily extend to the complex case.

5. IMPLEMENTATION AND SIMULATIONS

In this section, we illustrate our theoretical results on simple ex-
amples. We setM = N = 2. The first source signals1(n) is gen-
erated as the centered version of the output of a binary convolutive
encoder driven by an i.i.d. sequence. This signal is a decorrelated,
but not an i.i.d. sequence. The second source signals2(n) is ob-
tained as the centered version of the output of an instantaneous non
linear device (an exponential device) driven by a complex valued
linear process. The two source signals are mixed by a complex,
degree 1,2 � 2 non minimum phase filterH(z) to produce the
observationy(n) = [H(z)]s(n), wheres(n) = [s1(n); s2(n)]

T .
The source separation procedure is based on the maximization

of the contrast

�(g) =

���� cum4(r(n))

(E(jr(n)j2))2

����
2

wherer(n) = [g(z)]y(n). We note that in the particular case
M = N = 2 considered here, the first step of the deflation pro-
cedure allows in principle to separate the two sources : the maxi-
mization of�(g) allows to produce a filtered versionr(n) of one
source signal (say the first source signals1(n)). Next, the criterion
E(ky(n) � [t(z)]r(n)k)2 is minimized over the set of all2 � 1
filter. The 2-dimensional signal[t(z)]r(n) clearly coincides with
the contribution of source 1 on the sensor array, while the error
y(n)� [t(z)]r(n) represents the contribution of the second source
on the sensor array.

Let us give some details concerning the practical implementa-
tion of the procedure. In practice, the minimization of�(g) is per-
formed over the set of all non causal filterg(z) =

PL
k=�L gkz

�k

of fixed degreeL, assumed to be large enough. The same trick is
used to minimizeE(ky(n)� [t(z)]r(n)k)2. We denote byg the
vectorg = (g�L; : : : ; g0; : : : ; gL)

T associated with filterg(z).
For each filterg(z), the contrast function�(g) is estimated by its



natural empirical estimatê�(g) obtained by replacingEjr(n)j2

by gT R̂g andcum4(r(n)) by

1=P

P�1X
n=0

jgTY (n)j4 � 2
�
g
T R̂g

�2
� jgT Ŝgj2

Here, we have setY (n) = (y(n + L); : : : ; y(n � L))T , R̂ =

1=P
PP�1

n=0 Y (n)Y (n)� andŜ = 1=P
PP�1

n=0 Y (n)Y (n)T . Fi-
nally,g stands for the complex conjugate ofg, whileP represents
the sample size.

We note that̂�(g) is scale invariant. Therefore, a certain nor-
malization has to be used. Here, we minimize�̂(g) under the con-
straint thatgT R̂g = 1. For this, we use a standard iterative gra-
dient procedure followed at each step by a renormalization. The
gradient algorithm is initialized at the constant filterg(z) = (1; 1).

We finally present some numerical evaluations.P is equal to
10 000, and the parameterL is fixed to10. In order to evaluate the
performance of the source separation procedure, we first plot in
the following figures 300 samples of contributions on the second
sensor (Figure1) and of their reconstructions (Figure2).
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Figure 1: contributions on2nd sensor (real parts on LHS, imagi-
nary ones on RHS)
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Figure 2: reconstructions on2nd sensor (real parts on LHS, imag-
inary ones on RHS)

We also evaluate the so-calledseparation rate: denote bŷck;l(n)
the estimated contribution of sourcel on sensork. Then, we define
the separation rate of thelth contribution on thekth sensor by:

SEPRk;l =

P
n jĉk;l(n)� ck;l(n)j

2P
n jck;l(n)j

2

In the case of our present example, we haveSEPR2;1 = 0:00355
andSPER2;2 = 0:00252. In order to measure the “degree of
improvement” of our method, we note that, before the source sep-
aration procedure,SEPRbef2;1 = 3:3228 andSEPRbef2;2 =

0:28431 whereSEPRbefk;l =

P
n jyk(n)� ckl(n)j

2P
n jckl(n)j

2
.

6. CONCLUSION

In this paper, we have addressed the source separation problem in
the case where the source signals are not necessarily (non Gaus-
sian) linear processes. We have shown that if a deflation approach
is used, it is possible to solve this problem by maximizing a stan-
dard contrast function. Moreover, we have proved that as in the
case of linear process sources, contrasts based on higher order cu-
mulants have no spurious local maximum. Finally some simula-
tions illustrating our results have been presented.
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