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¢k, (n) = [Hg,(2)]si(n) is then built by seeking the filtered ver-
sion ofw; which is closest ta (n) in the mean square sense.

In this paper, we address the problem of the separation of convo-

lutive mixtures in the case where the non Gaussian source signals  However, the hypothesis that each source signal is a linear
are not necessarily filtered versions of i.i.d. sequences. In thisprocess is rather restrictive. We note indeed that most of station-
context, we show that the contrast functions, used in the linear pro-ary signals can be represented as the output of a filter driven by a
cess source case, still allow to separate the sources by a deflatio@ecorrelateg but not necessarily i.i.d. sequence. For example, in
approach. Some particular properties of higher order cumulantsthe context of digital communications, the output of an error cor-
based contrast functions are also given. recting encoder driven by an i.i.d. sequence is often a decorrelated
but not an i.i.d. sequence. Our purpose is to deal with the source
separation problem in the case where the source signals are non
Gaussian signals which do not necessarily coincide with filtered
versions of i.i.d. sequences. Some previous works have addressed
The field of blind source separation has raised growing interest in thjs case by using various techniques (e.g. [11, 8, 3]). The purpose
the last decade. In this context/ non observable, mutually inde-  of this study is to show that the approaches based on the optimiza-
pendent non Gaussian source signéts) = [s1(n), -, sm(n)] tion of a contrast function do work when the deflation approach
are mixed by amnknownN x M (N > M) linear and time invari- (introduced in the linear process case in [6] and developed in [9]
antfilter H (z) = 3. H(k)z~" to give aN-variate observed  where it is called iterative) is used. Our results thus legitimate the
signal use of contrast functions for separation of convolutive mixtures in
fairly general cases.

This paper is organized as follows: in section 2, we adapt the
classical definition (see [5]) of a contrast function to our purpose
and provide some important examples. In section 3, we explain
how the maximization of a contrast function allows to solve itera-

. . tively the blind source separation problem. In section 4, we stud
of each source on each sensor, i.e. sigaglén) = [Hx,i(2)]si1(n) morg specifically the confrast funth)ion defined as the squared ku):-
fork=1,..-,Nandl =1,-.-, M. tosis; we show that, as in the case of linear process source signals

This problem was mainly investigated under the hypothesis 15 g}y this contrast function does not show spurious local maxi-
that the source signals are non Gaussian, independent and identis, ,m’ Finally, some simulation examples are given in section 5.
cally distributed (i.i.d.) sequences. In this case, it is possible to

recover each source sigrs(n), up to a delay and a scaling factor
by minimizing a contrast like function (see e.g. [6, 9, 2, 7]). In
order to retrieve the signals;;(n) for eachk andl, [10] pro-
posed to use the following scheme : having an estindate)
of source signak;(n), signalci,(n) = [Hi,i(z)]si(n) is esti-
mated as the filtered versiditix ;(z)]3:(n) of 3 (n) for which
Elyk(n) — [jtjl,e’,(z)]gl(n)|2 is minimum W_r_t_]fIk,l(z), Definition 1 A contrastC' on X is a mapping fromt to R sat-
As remarked in [10], these approaches can be extended to thdsfying the following assumptions :
case where the source signglgare non Gaussidimear processes
i.e. filtered versions of i.i.d. sequences. In effect, the above
procedures allow to retrieve estimatésof w;; each estimate of

1. INTRODUCTION

y(n) =) H(k)s(n—k) = [H(=)] s(n)

keZ

)

The components af(n) can be, for example, the signals received
on an array ofN sensors. The blind source separation problem
consists in recovering, from the observatigin), the contribution

2. CONTRAST FUNCTIONS: DEFINITIONS AND
EXAMPLES

Let X be a set of non Gaussian scalar random variables.

(i) For eachz € X, C(z) depends only on the probability
distribution ofz.

(i) Let (z;)i=1,m (eventuallym = oco) bem independent (but
not necessarily identically distributed) random variables of

This work has been supported by EDF/DER



X and let(a;)i=1,m bem coefficients such thgC" | a;z;
belongs tat’. Then,

CQ aiwi) < mpx C(z:) @
(iii) Equality holds in (2) if and only ik; = ai,0(i —i0) where

10 denotes one of the indices for whigtax;—1,,,, C(z;)
C(a:,-o )

We note that this definition differs from that of Donoho [5] only
in that we do not require the sequenge);—1,~ to be identi-
cally distributed. Consequently, it is not surprising that most con-
trast functions used in the one-input / one-output blind deconvo-
lution context still satisfy the requirements of definition 1. For
example, it can be easily proved (see [5, 1]) that the opposite
of the Shannon entropy, defined byS(z) = E[logp.(u)] =

J p2(u)log ps(u)du, is a contrast function on the saf of all

unit variance random variables. Another example, motivated by
ref. [7], is the following : let¢ be a convex increasing function
admitting a unique global minimum dR.*, denote by cur(z)

the orderg (¢ > 2) cumulant ofz and by Xi, the subset of all

z € X for which cumy(z) # 0. Then,Cy(z) = ¢(|cumy(z)]) is

a contrast function on the sét.

3. APPLICATION TO THE DEFLATION APPROACH
FOR SOURCE SEPARATION

We first recall that the principle of the deflation approach consists
in extracting the sources one by one. More precisely,a N
filter g(z) is first computed in such a way that the scalar sig-
nal r(n) [9(2)]y(n) coincides with a filtered version of one
of the source signals, say(n). The following step consists in
finding a N x 1 filter ¢(z) for which the variance of the signal
g(n) = y(n) — [t(z)]r(n) is minimum. As signal(n) is sup-
posed to be independent on signal&:) for [ # 1, itis clear that
each componetjt; (z)]r(n) of [t(z)]r(n) coincides with the con-
tribution [Hy,1(z)]s1(n) of s1(n) on thek!™ sensor. Therefore,
7(n) is a convolutive mixture of signalg (n) for I # 1. The same
procedure can be applied to sigéh) to extract the contribution

and that there exists at least one functify). in the unit sphere of
£? for which?

”?u”p:lc([fk(Z)]Sk(n)) = C([fr,» (2)]sk(n))

(4)

Be g(z) any 1 x N filter for which E([[g(2)]y(n)]?) < +oo ,
denoter(n) = [¢g(z)]y(n) and consider the following function:

r(n)
E(r*(n))

E:g(z)— O] ] (5)

Then, the global maximum &fis finite and is reached by at least
one filter, sayg.(z). More importantly, the corresponding scalar
signal r.(n) [9«(2)]y(n) is a filtered version of one of the
source signals.

Proof. We first remark that-(n) can be written as(n)
[f(2)]s(n), where f(2) is thel x M filter defined byf(z) =
g(2)H(z). As the source signals; (n) are assumed to be unit
variance and decorrelated, the spectral density matrix ofifhe
variate signals(n) is reduced talas (i.e. the M x M identity
matrix). HenceE [r?(n)] = [|f||>. The normalized random vari-

abler(n)/y/E(r?(n)) thus equaldf(z)/||fl|]s(n). Therefore,
maximizingC[r(n)/+/ E(r?(n))] with respect toy(z) is equiva-
lent to maximizingC'([f(z)]s(n)) over the set of x M unit norm
filters f(z).

Let f(z) = (fi(2),-.-, fm(2)), |Ifll = 1, be a unit norm
1 x M filter . Therf

fiz)

A ] s1(n)

F(stm) = S el [
k=1

Putry, (n) = H’}E:II)] sk(n). Then, itis clear that thery (n)) 1<k <ar

are independent unit variance random variables. Therefore, by
item (ii) of Definition 1,

fr(2)

C([f(2)]s(n)) < I £

Jaen @

1<k<M [

of a second source signal on each sensor. All other sources ard-et,. < +oobe defined agy,. = sup s, =1 C([fx(2)]sk(n))

extracted by iterating this scheme.

[6, 9, 10] showed that, if the source signals are linear pro-
cesses, the maximization of a normalized cumulant(
[9(2)]y(n) allows to extract a particular filtered version of one

and denote byf:,. one argument of this maximization problem.
Be ko such that\y,,. = maxi<k<m Ax,«. Then, we claim that

||i1ﬁ£10([f(z)]5(")) = Ako,x @)

of the source signals: the source generating i.i.d. sequence. The
above iterative approach can thus be used to solve the blind sourcerg show this, we first remark that, for each unit narm M filter
separation problem in the linear process source signal case. f(2)
We now extend these results to the case where the source sig-
nals are not filtered versions of i.i.d. sequences. As we seek a
filtered version of the sources, we can assume, without any re-
striction, that eacls;(n) is a unit variance, centered and decorre-
lated (but not i.i.d.) sequence. fi(z) = [fi(2),..., fu(2)]
Y onez f(n)z7"isal x M filter, let us denotd] f|| =

> ez f(n)f(n)*]% its £2 norm. LetC be a contrast function

defined on the set; of all unit variance random variables. Then,
we have the following result:

fr(2)
Il fell
Let f.(z) be thel x M unit norm filter defined byf.(2)

(0,-..,O,fko,*(Z),O,---,O)- Then,C([f*(z)]s(n)) = Akgyx-
So, (7) holds.

C([f(2)]s(n)) <

< max ({
1<k< M

J st < rvg

1As £2 is an infinite dimensional set, this hypothesis is not necessarily
fulfilled, even for a regular functiod’, simply because the unit sphere of
£2? is not compact. However, this assumption seems reasonable.

’the random variable[ ﬂ’}i"”)] sk(n) should be considered null if
fu(z) =0

Theorem 1 Assume that, for eaclk,=1,---, M,

sup C([fx(z)]sk(n)) < 400
[ frll=1

®3)



In order to complete the proof of the theorem, it remains to
establish that iff; (z) is an anothei x M unit norm filter that
verifies

C([£e(2)]s(n)) = Ak« ®)

then all the components of,(z) but one are zero. For this, we
remark that

frx(2)
1%,

Therefore, identity (8) implies that

Cfs(n) < | max, c<[ ] 51.(m)) < Nig.e

fr,s (2)
1 fo

C((f: ] sk(n))

(2)s(n) = max ([
y P ) . .

As [fi(2)]s(n) = Xicpem ||fk7*||[m]sk(n), this holds if

and only if all coefficients(|| f7..||)x=1,n but one are zero (see

item (iii) of Defintion 1), i.e. iff the signalf. (z)]s(n) is a filtered
version of a single source sigrilll

Lemma 1l Let(rk)i1<k<m be M independent unit variance ran-
dom variables among which at least one has a non zero fourth
order cumulant. Let us consider the functi@defined on the
unit sphere oflR™ by ®(a) = C2(3>, ) < ax7k) Wherea =
(a1,...,an). Then, the local maxima @b are the vectors.
given byay . = £d(k — ko), whereko is any index for which

ca(ry) # 0.

We now prove Theorem 2. Léft.(z) be a local maximum of¢
restricted to the unit sphere. Choaseg,(n) [f’“’*(z)] sk(n)

1 e, 1l
anda, = (a1, -yanme) = (||fiells---, | far,«]]) (recall that
re«(n) = 0if fi «(2) = 0). We first note that the fourth order
cumulant of the variabler . (n) cannot be zero for akt, other-
wise, ¥( f.), which is a local maximum, would be equal@GoLet

&, be the function defined on the unit spherdiot by

®.(a) =Ca( D axri«(n))

1<k<M

This shows that, under the assumptions (3) and (4), it is possi-As f«(z) is a local maximum of¥, the vectora. is a local maxi-
ble to extract filtered versions of the source signals by the deflationmum of ... By lemma lay,. = £§(k — ko), i.e. all the compo-
approach introduced in [6] and [9]. We feel that these ideas cannotnents off.(z) but one are identically zerd
be generalized to non iterative source separation approach based The reader may check that these results still hol@sifz)
on a contrast function (such as [2]). Due to the lack of space, we (cuma(z))? is replaced withp(|cuma(z)|), whereg is a convex
do not discuss this point here. Finally, we note that our results increasing function admitting a uniqgue minimumdafT he results
can be extended straightforwardly to the complex valued signalsof this section also easily extend to the complex case.
case. In particular, the numerical results presented in section 5 are
obtained in the complex case. 5

. IMPLEMENTATION AND SIMULATIONS

4. PROPERTIES OF THE CONTRAST FUNCTION
CUMZ(X)

In this section, we illustrate our theoretical results on simple ex-
amples. We seM = N = 2. The first source signah (n) is gen-
erated as the centered version of the output of a binary convolutive
If the source signals are linear processes, the contrast functionsncoder driven by an i.i.d. sequence. This signal is a decorrelated,
defined from the normalized cumulants are attractive because theyout not an i.i.d. sequence. The second source sigy{al) is ob-

are free of spurious local maxima [9]. In this section, we show tained as the centered version of the output of an instantaneous non
that this property remains valid in our more general context. With- |inear device (an exponential device) driven by a complex valued
out restriction, we work on the séltio of all unit variance ran-  |inear process. The two source signals are mixed by a complex,
dom variables having non zero fourth-order cumulants. Hence, degree 12 x 2 non minimum phase filteE (z) to produce the

the square of the normalized fourth-order cumulant coincides with observationy (n) = [H(z)]s(n), wheres(n) = [s1(n), s2(n)]T.
function Cz2(z) = (cumy(z))®. This contrast is relevant in our The source separation procedure is based on the maximization
context if, for eactk, A,(fl =sups, =1 C2([fx(2)]sx(n)) isnon of the contrast

zero. This extra assumption is assumed from now oe now
state the following result:

_ | cuma(r(n))
@) = | ErmE)?

wherer(n) = [g(z)]y(n). We note that in the particular case
M = N = 2 considered here, the first step of the deflation pro-
cedure allows in principle to separate the two sources : the maxi-
mization ofE(g) allows to produce a filtered versiarin) of one
source signal (say the first source signdn)). Next, the criterion
E(||ly(n) — [t(2)]r(n)]|)? is minimized over the set of al x 1
filter. The 2-dimensional signd@(z)]r(n) clearly coincides with

the contribution of source 1 on the sensor array, while the error
y(n) — [t(z)]r(n) represents the contribution of the second source
on the sensor array.

Let us give some details concerning the practical implementa-
tion of the procedure. In practice, the minimizatior&tf) is per-
formed over the set of all non causal filiglz) = Zﬁz_L grz" "
of fixed degree., assumed to be large enough. The same trick is
used to minimizeE (||y(n) — [t(z)]r(n)]|)?. We denote by the
vectorg = (g-r,--.,90,--.,95)" associated with filteg(z).

For each filterg(2), the contrast functio®(g) is estimated by its

1

Theorem 2 Beg(z) any1x N filter for whichE([[g(2)]y(n)]?) <
+o00, denoter(n) = [¢g(z)]y(n) and consider the following func-
tion:
r(n) ]
E(r?(n))

Let g«(z) be a local maximum of (9). Then, the sigma(n) =
[+ (2)]y(n) is a filtered version of one of the source signals.

E:g(z) —~ Cqf 9)

Proof As in the proof of theorem 1, we s¢fz) = g(z)H(z),
and remark that the study of the local maxima of (9) is equiva-
lent to the study of the local maxima of the restriction to the unit
spherd)| f|| = 1 of the function¥(f) = Cz([f(z)]s(n)). In order
to study the maxima o¥ on the unit sphere, we first give the fol-
lowing lemma which is an immediate generalization of a result of

3.

. . . 2) .
Sour procedure is still relevant if one of tb}éc 1 is zero




natural empirical estimat&(g) obtained by replacing?|r(n)|? In the case of our present example, we h8¥&PR> ; = 0.00355
by ngzg andcuma(r(n)) by and SPER, > = 0.00252. In order to measure the “degree of
improvement” of our method, we note that, before the source sep-

aration procedureSEPRbef>,1 = 3.3228 andSEPRbefa» =
2y () = cua(n)]?
2 ler(n)]?

P—1
T 4 75\ T & 2
VP;'-" Y(n)] _2(g Rg) ~ lg" gl 0.28431 whereSEPRbe fi; =

Here, we have set (n) = (y(n+ L),...,y(n — L))T, R =
1/PYP Y)Y (n)* andS = 1/P P Y (n)Y (n)”. Fi-
nally, g stands for the complex conjugategifwhile P represents | his paper, we have addressed the source separation problem in
the sample size. the case where the source signals are not necessarily (non Gaus-
We note thaE(g) is scale invariant. Therefore, a certain nor-  sjan) linear processes. We have shown that if a deflation approach
malization has to be used. Here, we minint&g) under the con- is used, it is possible to solve this problem by maximizing a stan-
straint thatg” Rg = 1. For this, we use a standard iterative gra- dard contrast function. Moreover, we have proved that as in the
dient procedure followed at each step by a renormalization. The case of linear process sources, contrasts based on higher order cu-
gradient algorithm is initialized at the constant filtge) = (1, 1). mulants have no spurious local maximum. Finally some simula-
tions illustrating our results have been presented.

6. CONCLUSION

We finally present some numerical evaluatiodsis equal to
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the estimated contribution of sourten sensok. Then, we define

the separation rate of tH&* contribution on the:" sensor by:

> e (n) = cra(n)?
> ek (n)]?

SEPRy, =



