
ADVANCES IN CONFIDENCE MEASURES FOR LARGE VOCABULARY

A.Wendemuth, G. Rose and J.G.A. Dolfing

Philips Research Laboratories
Weißhausstraße 2

D-52066 Aachen, Germany
Email: fwendemu,rose,dolfingg@pfa.research.philips.com

ABSTRACT

This paper adresses the correct choice and combination of confi-
dence measures in large vocabulary speech recognition tasks. We
classify single words within continuous as well as large vocabu-
lary utterances into two categories: utterances within the vocabu-
lary which are recognized correctly, and other utterances, namely
misrecognized utterances or (less frequent) out-of-vocabulary
(OOV).

To this end, we investigate the classification error rate (CER)
of several classes of confidence measures and transformations.
In particular, we employed data-independent and data-dependent
measures. The transformations we investigated include mapping
to single confidence measures and linear combinations of these
measures. These combinations are computed by means of neural
networks trained with Bayes-optimal, and with Gardner-Derrida-
optimal criteria.

Compared to a recognition system without confidence measures,
the selection of (various combinations of) confidence measures,
the selection of suitable neural network architectures and training
methods, continuously improves the CER.

1 Introduction

We address the problem of correct choice and combination of con-
fidence measures in speaker-dependent large vocabulary recogni-
tion based on hidden Markov models. Our motivation is manifold:
e.g. when the speech input is recognized reliably with the help of
suitable confidence measures, the need to verify a speaker’s in-
put in a dialog structure diminishes. Therefore, the aim of this
work is to judge the word recognition result and to determine
whether we have to ‘accept’ or ‘reject’ this result. This decision is
based on speaker-independent and speaker-dependent confidence
measures. We do not apply elaborate garbage models but inves-
tigate the performance of several classes of confidence measures
and transformations. We investigate novel combinations of data-
dependent confidence measures leading to a very effective and
efficient classifier.

A number of confidence measure realizations related to the acous-
tic model, the search process and the language model exist in the
literature. Examples of confidence measures applied to the acous-
tic model are [3, 11], to the decoding process [5], and to lan-
guage model and word graphs [8, 10, 14]. It is possible to com-

bine several confidence measures of the same and/or neighboring
word hypotheses to solve the decision problem as demonstrated
by [4, 8, 11, 12]. However, complex combination strategies do
not significantly outperform simpler linear feature combinations
[8].

In Section 2 and 3, we introduce the procedure to arrive at the
best classification given the model parameters. Section 4 and 5
introduce the experimental setup and results, respectively. Finally,
we draw conclusions in Section 6.

2 Best classification with given model
parameters

We address the following question: after selecting the set of raw
input parametersX (see following sections), can we define a clas-
sifier for utterance verificationf(X) and a threshold� such that
the conditionf(X) � � will classify into classc = 0 (rejection),
and otherwisec = 1 (acceptance)?

We shall treat this problem in the framework of probability den-
sity functionsP (:) and conditional probability density functions
P (:j:), where it is understood that these functions are not known
to us but that our aim is to reproduce them, using the samples at
our disposal. It is clear that the decision boundaryf(X) = � will
ideally, after Bayes’ decision rule, have to be equal to the Bayes
posterior decision boundaryP (c = 1jX) = P (c = 0jX) = 0:5,
with the Bayes posterior probabilityP (CjX) of classC given the
observationX. We take into account the possible presence of out-
liers and misclassifications in our training set and will therefore
experiment in Section 3 with a careful adjustment of the decision
boundaryf(X) = � .

In order to deal directly with the functional forms off(:), we
adopt a vector notation. A particular sample from the set of
raw input parametersX will be the vectorXraw. For a linear
functional form off(:), we can first of all include the thresh-
old in f(:) simply by augmentingXraw with a constant1 to give
X = (Xraw; 1). The decision boundaryf(X) = � is then equiv-

alent toa
def
== J �X

!
== 0, where we have to find the components

of J. Note that in this formulation we do not attempt to model
P (CjX), but just the Bayes posterior decision boundary follow-
ing fromP (CjX).

The following shows under which conditions the Bayes poste-



rior distribution can be modelled as a function ofa. Some of the
outline follows [2]. Starting with Bayes theorem, it can be seen
as follows that the Bayes posterior can be written in the sigmoid
form

y = P (c = 1jX) = g(a0)
def
==

1

1 + e�a0
(1)

with

a0 = ln
p(Xjc = 1)P (c = 1)

p(Xjc = 0)P (c = 0)
(2)

We now assume that the class-conditional densitiesp(XjC) are
members of theexponential familyof distributions with common
non-linear dependence of the exponents onXraw and individual
linear dependence onXraw. Bernoulli and Gaussian distribu-
tions are special cases of members of this family. Inserting the
functional form of these class-conditional densities into (2), we
indeed obtaina0 = J �Xraw� � = a.

We have therefore established that the use of a sigmoid form (1),
with a = J �X, always applies given the stated functional form of
the class-conditional densities. Since the latter is only a very mild
restriction, ouransatzis correct under rather general conditions.
However, we shall later see that fine-tuning of the result can lead
to better generalization which can be interpreted as an artefact of
these assumptions only applying approximately in our test cases.

Since we are only interested in classification, we may apply di-
rectly from (1) the decision boundarya = 0, i.e., we never actu-
ally need to compute the posterior probability. Note however that
this computation can become useful if training and test scenario
have differentknowndistributionsP (C) andP (xjC) which can
then be taken care of very simply by multiplications.

Having established the functional form of a Bayes posterior dis-
tribution, we now look at a suitable error function that will be
minimized. Following standard arguments [2], for binary classifi-
cations we minimize over all samplesi theCross Entropy[7]

E = �
X
i

fci log(yi) + (1� ci) log(1� yi)g: (3)

We find aJ that minimizes (3) if we apply a stochastic sequence
of additive modifications�J. To this end, we choose a constant
� and, at each step, we choose randomly an inputi and updateJ
along the negative gradient ofE with respect toJ,

(�J)(i) = ��
@E

@ai
rJ(ai) = �Xi

�
ci �

1

1 + e�ai

�
(4)

This defines our learning rule for a Neural Network with one layer
and sigmoid output function (1). Note that the term in parentheses
lies in the range(�1; 1). In the case of complete misclassification
it approaches the values�1 which makes (4) exactly equivalent to
conventional Perceptron learning [9]. Equating (4) to0 is a fixed-
point equation forJwhich however cannot be solved analytically,
justifying the Neural Network approach.

3 Fine-tuning the result

Having trained the network in this Bayes-optimal sense (with�
decreasing over time) still leaves us with the problems of outliers
or misclassified data in our training samples. Our assumptions for
validity of the functional form (1) may also lead to non-optimality
of the result obtained so far.

How can these problems be tackled? Although the cross entropy
error has the pleasing property of estimating small probabilities
much better than a LMS error function, which is favorable in the
case of outliers, other choices of error functions such as regular-
ized or marginalized ones [2] can be considered. This is outside
the scope of this paper.

Instead, we fine-tuned our result forJ at the decisionboundary.
To this end, an algorithm developed by one of the authors [13]
was used to include further data into the set of correctly classified
patterns. TheGardner–Derridaerror function in [13], measuring
the number of correctly classified data, is maximized. By doing
so, outliers or originally misclassified data are ignored for the cal-
culation ofJ. This results in a shift of the decision boundary,
together with a higher number of correctly classified data, and
improved classification ability in the test sets (Section 5.2).

4 Experimental setup

In the following, we will present and compare results obtained
both for small vocabulary and large vocabulary tasks. The exper-
imental setup for both scenarios is described. Data for the small
vocabulary task are taken from [6] and are used here for compar-
ison.

The employed database for small vocabulary command-and-
control contains single word utterances by 50 individuals (25
male, 25 female) who each spoke four to six utterances of
10 given words plus a number of additional out-of-vocabulary
(OOV) utterances. The development data model 500 words with
hidden Markov models each trained with only two additional ut-
terances. The number of states of a word model equals about 0.8
times the number of observed frames and each state contains only
one density. The acoustic preprocessing employs a frame-shift of
20ms and computes 20 cepstral features, including derivatives, for
every feature vector. The evaluation data contains a total of 3345
utterances, 2861 utterances to test the word models and 484 OOV
utterances evenly distributed over all speakers.

For the large vocabulary task we employed the male part of the
evaluation set NAB’94 which contains 10 male speakers who each
spoke 15-17 whole sentences composed out of a 64k vocabulary.
The training of the triphone models was carried out gender de-
pendently on the WSJ0+1 corpus. The Philips system for large
vocabulary continuous speech recognition used here is described
in [1].

The classification error rate (CER), which is the number of cor-
rectly tagged words divided by the total number of words, is used
to compare results.

In our experiments, we employ five basic confidence measures
for the small vocabulary task, and eight (three additional) for the
large vocabulary task. They are described in the following. Each
confidence measure is computed at the end of a word hypothe-
sis with loglikelihoodlw at timetend for a word starting attstart.
The ‘two-best’ measure contains the log–likelihood difference be-
tween the best and second best hypothesis at timet while the ‘n-
avg-best’ measure contains the difference between the best and
the average loglikelihood of the N-best hypotheses. The measure
‘n-best-states’ is computed as the difference of the loglikelihood



of the word hypothesis and the sum of the best state hypothe-
ses over the interval[tstart; tend]. The ‘avg-acoustics’ divides
lw=(tend� tstart+1). The ‘speaking-rate’ divides the number of
speech frames of the word hypothesis by the number of states in
the word model.

The measure ‘word-end-frequency’ is the frequency of oc-
curences of the desired word or its homophones in the list of all
word ends. The ‘active-state-count’ is the number of remaining
active states at the word end time after pruning. The ‘lm-score’ is
simply the bigram language model score for the word and its pre-
decessor. The measure ‘word-graph’ was computed off-line using
the full wordgraph. It is the ”posterior word hypothesis probabil-
ity” which is calculated for each word hypothesis (”edge” in the
word graph) within a time interval given a sequence of acoustic
feature vectors (for more details see [14]).

For each utterance of the development and evaluation data, we
compute a vector with confidence measures. Because the con-
fidence measures obtained from the development data partially
exhibit a behavior completely different from the measures com-
puted on the evaluation data, we split the set of vectors of confi-
dence measures randomly in two parts. For the small vocabulary
task, we split a set of 3345 vectors into one part containing 1672
vectors (used to train the confidence classifier) and a second part
of 1673 vectors used for testing. For the large vocabulary task, we
split a set of 3637 vectors into one part containing 1818 vectors
(used to train the confidence classifier) and a second part of 1819
vectors used for testing.

All results given in this paper are on the test part of the two
databases.

Besides a speaker-independent setup, we can use a speaker-
dependent setup. Instead of the decision problemf(X) � �
with a fixed threshold� for all speakersi, we employ one thresh-
old for all data but first subtract a speaker-specific offsetOi. The
decision problem is then(f(X) � Oi) � � . This approach is
investigated in Section 5.3.

Proper classification of the vector of confidence measures prob-
ably cannot be done linearly. Therefore, we took the five best
single confidence measuresX

5
and appended toX

5
the 15 2nd-

order components(x21; x1x2; x1x3; : : : ; x
2
5). This leads to a 20

dimensional vectorX
20

which can be treated with standard scalar
multiplications.

5 Experiments

In the initial, speaker-dependent recognition system without any
confidence measures, the classification error rate equals the word
error rate of 16.7% in the small vocabulary task and 14.9% in the
large vocabulary task. We compute an optimal threshold on the
training set and apply that threshold to the test set.

5.1 Speaker-independent confidence mea-
sures

We investigate the tagging accuracy of the eight individual confi-
dence measures in a speaker-independent setting.

Table 1: The classification error rate [%] for individual confi-
dence measures.

Confidence measure Error rate
Small Voc. Large Voc.

two-best 10.2 .
n-avg-best 9.8 12.2
n-best-state 12.2 12.5
avg-acoustic 12.4 12.4
speaking-rate 15.1 12.9
word-graph . 11.4
word-end-frequency . 24.8
lm-score . 12.4
active-state-count . 12.6

One striking feature in the large vocabulary task is the fact that
the best single confidence measure “word-graph” is already very
efficient with 11.4% CER and exceeds the other single confidence
measures by at least 0.8% absolute in CER. This can be explained
since the “word-graph’ is the only measure which uses the history,
including the language model information, in a manner more so-
phisticated than the “lm-score”.

5.2 Confidence measure combination

In a follow-up experiment, we try to combine the confidence mea-
sures such that the resulting classification error rate is lower than
that of the individual confidence measures. The improvement is
measured against the best single CER, this is 9.8% for small vo-
cabulary and 11.4% for large vocabulary. We classify bothX

5
,

X
8

andX
20

with the one-layer perceptronJ as explained in Sec-
tion 2.

Table 2: The classification error rate [%] for combined confi-
dence measures.

Combination Error rate
Small Voc. Large Voc.

Bayes (d=5),J 8.4 (-14.3%) 11.0 (-3.5%)
Bayes (d=8),J . 10.9 (-4.4%)
Bayes (d=20),J 8.5 (-13.3%) 11.3 (-1.8%)

It can be immediately seen that the improvement in CER is much
better for the small vocabulary task. This can be traced to two
effects. The task for large vocabulary is certainly more difficult.
The other effect is that the best single confidence measure “word-
graph” is already very efficient, as explained above in Sec. 5.1.
A further improvement is therefore more difficult.

5.3 Data-dependent confidence measures
and combination

First, we investigate the effect of personalizing the ‘avg-acoustic’
and ‘speaking-rate’ measures. For the ‘avg-acoustic’ measure,
we subtracted a speaker-specific offsetOaa

i , as explained in Sec-
tion 4. Oaa

i contains the average value of ‘avg-acoustic’ on all
training utterances of speakeri. In the case of the speaking rate,
we determine the offsetOsp

i similar to the ‘avg-acoustic’ mea-
sure. We compared minimum, maximum and mean functions to



obtain speaker-dependent offsets and found the best performance
for taking the mean ‘avg-acoustics’ and the maximum ‘speaking
rate’. The results are presented in Table 3 while combinations of
confidence measures are presented in Table 4.

Table 3: The classification error rate [%] for single, individual
confidence measures which are speaker dependent

Error rateConfidence
Small Largemeasure
Voc. Voc.

avg-acoustic 12.4! 11.1 (-10.5%) 12.4! 12.4 ( 0.0%)
speaking-rate 15.1! 15.1 ( 0.0%) 12.9! 12.4 (- 3.9%)

Second, we replace two confidence measures in the speaker-
independent measure vectorX

8
= (x1; : : : ; x8) to obtain a new

feature vectorX
0

8
where thex

0

4 = x4�O
aa
i andx

0

5 = x5�O
sp
i

as explained above. Acting on these vectors which contain our
raw confidence measures, we now use the neural network trained
with Bayes only, and trained with Bayes and Gardner-Derrida
(GD) error functions, to find the best technique for confidence
measure combination. The classification results with the word-
specific feature vectorX

0

8
andX

0

20
are given in Table 4. Improve-

ments are again given against the best single confidence measure.

Table 4: The classification error rate [%] for combined confi-
dence measures including spaeker-specific confidence measures.

Error rateCombination
Small Voc. Large Voc.

Bayes 7.0 (-28.6%) 10.9 (-4.4%)
Bayes + GD 6.7 (-31.6%) 10.7 (-6.1%)

As stated in Section 3, the fine-tuning shifts the decision bound-
ary. We indeed see that, for both small and large vocabulary, this
fine-tuning leads to improved classification error rate .

6 Conclusion

Overall, the single confidence measures as well as the combined
measures improve the classification error rate. Compared to a
recognition system without confidence measures, we have im-
proved the classification error rate from 16.7% to 6.7% (-60%
relative) for small vocabulary tasks, and from 14.9% to 10.7% (-
28% relative) for large vocabulary tasks. Compared to the single
best confidence measure, the improvement is -31.6% for small vo-
cabulary tasks, and -6.1% for large vocabulary tasks. The applica-
tion of a Bayes one-layer perceptron, Bayes plus data-dependent
measures, and Bayes plusGardner–Derridaplus data-dependent
confidence measures continuously improves the classification er-
ror rate. Comparing small and large vocabulary tasks, we find
that the improvements for small vocabulary tasks are larger. This
can be explained by two effects: a) The task for large vocabulary
is certainly more difficult. b) The best single large vocabulary
confidence measure “word-graph” is already very efficient since
it uses the word history, a further improvement is therefore more
difficult.
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