
HYPOTHESIS  DEPENDENT  THRESHOLD  SETTING
FOR  IMPROVED  OUT-OF-VOCABULARY  DATA  REJECTION

D. Jouvet, K. Bartkova & G. Mercier

France Télécom, CNET/DIH/DIPS
2 Av. Pierre Marzin

22307 Lannion, France

ABSTRACT
An efficient rejection procedure is necessary to reject out-of-
vocabulary words and noise tokens that occur in voice activated
vocal services. Garbage or filler models are very useful for such a
task. However, a post-processing of the recognized hypothesis,
based on a likelihood ratio statistic test, can refine the decision
and improve performance. These tests can be applied either on
acoustic parameters or on phonetic or prosodic parameters that
are not taken into account by the HMM-based decoder.

This paper focuses on the post-processing procedure and shows
that making the likelihood ratio decision threshold dependent on
the recognized hypothesis largely improves the efficiency of the
rejection procedure. Models and anti-models are one of the key-
points of such an approach. Their training and usage are also
discussed, as well as the contextual modeling involved. Finally
results are reported on a field database collected from a 2000-
word directory task using various phonetic and prosodic
parameters.

1. INTRODUCTION
An efficient rejection procedure is necessary to reject out-of-
vocabulary words and noise tokens that occur in voice activated
vocal services. Garbage or filler models are very useful for such a
task. However they also reject vocabulary words and a trade-off
is to be found between false alarm rate and false rejection rate.
The aim of the post-processing procedures is either to decide if
the recognized hypothesis should be accepted or rejected, or to
provide a confidence score for the recognized hypothesis that
will be delivered to and treated by the dialog module. Only the
first aspect (acceptation or rejection) is considered in this paper.

As the post-processing procedure is applied after the HMM-
based decoding, the full hypothesis is known, including the
segmentation of the signal. Thus segmental information can
easily be used, and have largely been used for re-ordering the N-
best hypotheses [1,2]. The formalism developed in [2] lead to
using for each segment a model of correct events and a model of
incorrect events (anti-model), and computing likelihood ratios
according to these 2 sets of models. Various features have been
used, among which phonetic and prosodic parameters such as
duration [3], energy and voicing, and also some segmental
phonetic features estimated by means of neural fuzzy networks
[4]. As these features are not used in the HMM decoding, they
provide complementary information. Comparing the likelihood
ratio value to a threshold allows to reject out-of-vocabulary data.
Phonetic [5] and acoustic [6] parameters have already been used
on small vocabulary recognition tasks.

All these approaches rely on likelihood ratio test statistics, which
are very similar between speaker and utterance verification [7].
The choice and training of the anti-models necessary for the
alternate hypothesis is one of the key-points of the approach.
Cohorts of speaker models are often used in speaker verification,
and sets of phoneme models are used in utterance verification
[8]. Here a set of anti-models is proposed. They are trained on
various data corresponding to different types of errors. Another
key-point, the threshold setting, was not much investigated so
far, except a few studies for speaker verification. Here, it is
shown that the likelihood ratio statistics differ according to
various classes of hypothesis, thus it is necessary to make the
decision threshold dependent on the hypothesis to improve the
rejection performance.

The paper is organized as follows. Section 2 describes the post-
processing procedure. Two aspects are emphasized, namely the
choice and training of the anti-models, and the threshold setting
according to its dependence on the recognized hypothesis.
Section 3 presents and discusses some experiments conducted on
a field database collected from a 2000 word- directory task using
various phonetic and prosodic parameters.

2. POST-PROCESSING
The aim of the post-processing described below is to decide if,
for a given test utterance X , the recognized sequence of words
W  should be accepted or rejected. A likelihood ratio test
statistic is performed, and the answer W  is accepted if the
resulting value is above a given threshold; otherwise, the answer
W  is rejected. Although the following description concerns the
whole sequence W , the same approach can be applied for each
individual word.

2.1 Likelihood Ratio Statistic
Let ( )Iϕϕϕ ,,, 21 L=Φ  denotes the sequence of phonemes iϕ
corresponding to the recognized sequence of words W  (the
approach can be applied to any set of units, they do not need to
be phoneme-like). Let iS  denotes the segment associated to

phoneme iϕ  and iX  a feature vector measured on segment iS .

The likelihood ratio test statistic ( )WXLR ,  is defined as:
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where 
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Mϕ and 
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Mϕ are respectively the model and the anti-

model associated to the phoneme iϕ .



2.2 Modeling Issues
The same way contextual units are used for acoustic decoding,
contextual models are also used for computing the likelihood
ratio test statistic. Here again, a compromise is required between
a rough modeling (leading to a small amount of parameters that
will be correctly estimated) and a detailed modeling (leading to a
large amount of parameters that might not be correctly estimated
because of a lack of data). Moreover, it is important to note that
the contexts, that need to be taken into account, are not
necessarily the same for post-processing modeling as for acoustic
modeling. Phonetic knowledge is useful to define pertinent
models that will provide a good modeling of the post-processing
features used. For small vocabularies, a detailed but efficient
modeling can be achieved using word- and position-dependent
models [9]. However, such a detailed modeling is not
manageable for large vocabularies.

Hence, 
i

Mϕ and 
i

Mϕ  stand for a more precise notation

( )Wi
M ,,Φϕκ  and ( )Wi

M ,,Φϕκ , where ( )Wi ,,Φϕκ  refers to the

contextual model index that should be used for the phoneme iϕ
according to the fact that it belongs to the sequence of phonemes
Φ  and that the recognized sequence of words is W .

When phonetic or prosodic parameters are used, a model can be
shared by a set of phonemes having the same behavior for what
concern the feature(s) under study. For the experiments described
in section 3, the classification used depends on the feature
considered. For example, for duration based post-processing, the
models depend on the length of hypothesis in syllables, and also
on the relevant position (last syllable or not) and context
(followed by a pause, by a lengthening consonant or not, etc.).
For the energy and voicing based post-processing, a smaller set
of models was considered which takes into account the fact that
the left and right contexts are voiced or not.

The other modeling issue concerns the anti-model 
i

Mϕ

associated to phoneme iϕ  (in the adequate context). Previous

experiments [5] showed that having several anti-models trained
on specific sets of data leads to better performances than a single
anti-model. Consequently, a set of anti-models will be used

( ){ }KkM ki
,,1; L=ϕ , each one being trained on a specific set of

data corresponding to a specific type of errors. 3 anti-models are
considered: one trained from data that are mis-recognized
(substitution errors); one trained on out-of-vocabulary data (thus

generating false alarms), and an other trained on noise tokens
(generating also false alarms). These sets of anti-models can be
handled in different ways. For example one can take the best
anti-model for each segment feature iX :
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However, another approach is possible that takes into account
the fact that each type of model comes from a particular set of
data:
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This is like handling a multi-model instead of a single model
with mixtures. By doing this, a possible correlation between the
features of a given hypothesis is taken into account. It is this
approach which is used in the following experiments.

To avoid any hypothesis on the shape of the densities, discrete
densities are used for models 

i
Mϕ  and ( )ki

Mϕ .

2.3 Threshold Setting
Figure 1 shows some statistics of the likelihood ratio defined
before. These statistics are computed on the training set, and are
plotted according to length of the hypothesis (recognized
sequence of words) in syllables. 3 cases are considered: 1
syllable, 2 syllables, and finally 3 or more syllables. Statistics are
plotted for each type of data: correct hypotheses (i.e. correctly
recognized sequences of words), substitution errors, out-of-
vocabulary words and noise tokens. Cumulated histograms are
reported. For substitutions and false alarms, each point
represents the percentage of utterances (of this type) that have a
log likelihood ratio greater than a given value (abscise). For
correct hypotheses, each point reports the percentage of
utterances that have a log likelihood ratio smaller than a given
value. The point at which curves cross indicates that for this
threshold (abscise) percentage of false alarms accepted is the
same as the percentage of correct answers rejected (thus yielding
false rejections).

Comparing the 3 graphs, it is clear that the threshold (abscise) at
which the curves cross, depends on the length of the recognized
hypothesis in syllables. The threshold is around –0.7 for 1-
syllable hypotheses, around –0.3 and –0.5 for 2-syllable
hypotheses depending on the type of data, and greater than 0 for

1-syllable hypotheses 2-syllable hypotheses 3- and more syllable hypotheses
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Figure 1 – Log Likelihood Ratio Cumulated Histograms According to the Hypothesis Length in Syllables on Different Types of Data



3- and more syllable hypotheses. From these graphs, it seems
quite obvious that the optimal decision threshold should depend
on the hypothesis. Thus the post-processing test for accepting the
hypothesis (answer) will be:

( ) ( )WWXLR θ> (4)

A simple dependency just consists in taking into account the
hypothesis length in syllables: ( ) ( )( )WlengthW θθ = . The results
obtained with such an approach are reported on figure 2 and
discussed later.

2.4 Features
In the experiments presented in section 3, phonetic and prosodic
parameters are used: phoneme duration, phoneme energy,
voicing degree [9] and a consonant/vowel phonetic feature
estimated by means of a fuzzy neural network [4]. These features
are computed on the segments iS  associated to the phonemes

iϕ  and resulting from the Viterbi alignment. As the duration

measure is a normalized duration, models are estimated
separately for various hypothesis lengths in syllables. The energy
of the segments is also normalized.

3. EXPERIMENTS
Previous experiments on small vocabularies were reported in [5]
and a single decision threshold was used. Here the threshold
setting is studied, and a much larger vocabulary is considered.

3.1 System and Database Overview
The speaker-independent speech recognition system is HMM
based and relies on continuous densities.  Mel frequency cepstral
coefficients are computed every 16 ms, as well as their first and
second order derivatives estimated over 5 frame windows. A
flexible modeling relying on contextual models of the phonemes
is used [10]. The acoustic HMM parameters are trained on a
specific database design so as to exhibit as many phonetic
contexts as possible.

The HMM modeling also includes a garbage model made of a
loop of context-independent phonemes, noise models and a
silence model. By modifying the penalty (cost) associated to the
loop, one can modify the tradeoff between false rejections and
false alarms and substitutions. On Figures 2 and 3, the 2 points
corresponding to the “HMM alone” are obtained by running the
decoder with 2 different weights. The rightmost point allows to
measure the benefit of the post-processing procedures. The post
processing is applied from the leftmost point, that is from a
compromise leading to a smaller false rejection rate but a higher
false alarm rate. The post-processing procedure checks each non-
rejected answer and decides either to keep it or reject it. If the
system rejects a correct answer or a substitution error, that
increases the false rejection rate; if it rejects a false alarm on out-
of-vocabulary data or on noise tokens, that reduces the false
alarm rate. In order to obtain various compromises after post-
processing, various decision thresholds are considered.

The database was collected from a vocal service in operation,
which allows to obtain the phone number of, and to get
connected to, any CNET Lannion employee simply by
pronouncing its name. The name can be pronounced isolated or
can be preceded by the first name. This leads to a 2000-word
vocabulary. The data collected from several thousands calls over
several months is used here. Part of the data is used to estimate
the parameters of the post-processing models. The remaining part
is used to evaluate the performances.

3.2 Threshold Setting
The graphs on Figure 2 report the results obtained with the
voicing based post-processing using different thresholds. 3 error
rates are reported: substitutions on vocabulary data (left), false
alarms (FA) on out-of-vocabulary (OOV) data (middle), and
false alarms on noise tokens (right). The first curve (circles)
corresponds to a single threshold whatever the length of the
hypothesis is, the second curve (dots) relies on 2 thresholds, one
for the 1-syllable hypothesis and one for the other hypotheses.
The third curve (squares) uses a threshold for the 1- and 2-
syllable hypotheses and one for the others, finally, the fourth
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Figure 2 – Error Rates after Post-Processing with Different Threshold Settings.



curve (stars) uses 3 thresholds. In order to obtain a curve, the log
likelihood ratio is compared to ( )( ) ρθ +Wlength , where ρ  is
independent on the hypothesis and was varied in order to obtain
different false rejection rates and associated false alarm and
substitution rates. These figures clearly show that checking all
the hypotheses with a same threshold does not yield very good
results (top curve – circles) . On the opposite, adjusting the
threshold according to the hypothesis length provides good
results, and allows to reject many false alarms.

3.3 Modeling Issues and Features
Figure 3 (same axis meaning and data sets as for Figure 2)
compares the performances achieved with the different features.
The consonant/vowel phonetic feature yields a larger false
rejection rate than the other features. This may be due to the use
of a single threshold. On out-of-vocabulary data, all features
behave similarly. The main differences are observed on the noise
tokens. This might be due to the fact that for the
consonant/vowel feature a single discrete anti-model was used.
Thus training set statistics on noise tokens may have vanished
when combined with statistics on substitutions and out-of-
vocabulary tokens as noise tokens are less frequent. This problem
is overcome when separate anti-models are used.

4. CONCLUSION
It is shown that post-processing the HMM based hypothesis with
various phonetic and prosodic parameters largely reduces the
false alarms rate on out-of-vocabulary data and noise tokens for a
rather difficult task, namely a 2000-word directory access task. A
study of the likelihood ratio values showed that the decision
threshold has to be dependent on the hypothesis under test.
Experiments have confirmed this point, the best post-processing
results are indeed obtained using several decision thresholds that
depend on the hypothesis length in syllables. Using several anti-
models trained on separate types of errors was also efficient and
middle part of Figure 1 indicates that the threshold should also
depend on the optimal index k of the anti-model in equation (3).
Further work is still necessary to fusion the various post-

processing likelihood scores based on different features in order
to further improve performances and to select, if relevant, the
best features for each segment. Moreover, an automatic
procedure should help in determining the optimal set of
thresholds according to the cost of the various types of errors.
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Figure 3 – Error Rates after Post-Processing with Various Features


