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Av. Rovisco Pais, 1096 Lisboa Codex, PORTUGAL

e-mail: fmaciel,jpcg@isr.ist.utl.pt

ABSTRACT

This paper presents a method to automatically synthesize human
face images from holistic descriptions. We compactly represent the
face set by a small set of prototypes, which can be used in simple
ways to generate controlled morphings. This becomes possible
because separation of 2D-shape and texture provides a faithful,
closed and convex representation of images, and smoothes the
mappings between images and their properties. With this approach,
the user watches an image being continuously morphed according
to his indications, and the synthesized images always obey the
natural physiognomic constraints.

1. INTRODUCTION

Police investigation often requires a face sketch to be drawn from
a description. Traditional patchwork systems that combine typical
face parts (composite pictures) require very qualified human oper-
ators and usually produce unrealistic results. With our approach,
a non-specialized user describes a face using global characteristics
(like typical expression or physique) and watches an image being
continuously morphed accordingly. Even when indications are in-
herently local (like feature size) the results will obey the natural
physiognomic constraints.

1.1. Approach and Contribution

In order to ease the generation of smooth morphings, an image rep-
resentation should meet some requirements. We show why sepa-
rated 2D-shape and texture representations meet these requirements
and we also describe a method of computing this representation au-
tomatically.

Shape and texture representation allows us to identify well
defined regions corresponding to certain face characteristics. We
introduce the concept of extreme prototype to represent these re-
gions and to indicate directions that lead to the desired monotonous
changes in face characteristics.

1.2. Previous Work

This synthesis paradigm was first used in binary images by Ullman
and Basri [8]. Poggio and Brunelli [6], extended the approach to
gray-level images, using shape and texture representation. Since
then, shape and texture separation has been widely used in recog-
nition [2] and image manipulation [9, 7]. However, as far as we
know, this is the first application to the synthesis of images of
faces with completely new identity. Recently, Cootes et al (see [5])
use shape and texture separation in a representation model with a
promising range of high quality applications.

2. A SYNTHESIS PARADIGM

A discrete image I[n�n] can be interpreted as a vector i in the
n2-dimensional space Simage , whose coordinate ix+n�(y�1) cor-
responds to pixel (x; y). The subset of Simage containing all faces
(Cfaces) includes images varying in pose, rotation, scaling, illumi-
nation, facial expression and identity. In [3], Bichsel and Pentland
show that, if we exclude binary-type modifications (like adding of
glasses), these images form a visually homogeneous image class,
where any pair of points can be joined by a continuous line, itself
contained in Cfaces. This means that Cfaces is connected.

2.1. Direct synthesis paradigm and its distinction

The connectivity of Cfaces allows us to synthesize smooth image
sequences in a given class by generating continuous trajectories
inside the correspondent image subset. Trajectories should be
generated according to high level descriptions, so this synthesis
paradigm involves inverting the image-to-classification mappings,
which can be learned from examples. This contrasts with the
traditional approaches that resort to physicalmodels and rendering.

Example-based face image synthesis is a usual solution to
morphing (interpolation between two given examples) and feature
modification (pose, illumination, age and expressionchanges). Our
paradigm extends to a broader concept of parameter-controlled
extrapolation of an example set, allowing us to change face identity.

2.2. Direct synthesis: main features

Continuous parameter-to-image mappings must be learned from
examples. Due to the curse of dimensionality, the huge dimension-
ality of Cfaces imposes that too many examples must be gathered,
urging to the use of a compact data representation. Furthermore,
Cfaces is highly non-convex because of the nonlinearities between
edge positions and pixel intensity — see [3]. Generalization from
examples is an ill-posed problem, so our representation has to
provide smooth mappings so that regularization constraints make
sense. In short, a good representation must comply with the com-
promise among its fidelity, smoothnessand closedness. In section 5
we show how to experimentally demonstrate the properties of our
image representation.

Human intervention brings other difficulties, since witnesses
provide very incomplete and subjective descriptions. This is why
photo-fit operators are usually psychologists with artistic skills.



3. SEPARATED SHAPE AND TEXTURE
REPRESENTATION

Most of the stated difficulties can be overtaken by picking the
appropriate representation. Compaction requires data redundancy,
that is, requires some correlation among all images in our set. An
effective way of increasing image correlation is feature alignment
by geometric deformation. Unlike low-pass filtering (usual choice
for redundancy enhancement), geometric deformation can be easily
memorized and inverted. So, if deformation takes part in the
representation, the original images can be recovered.

This suggests a representation made of two parts: 2D-shape
(a geometric deformation that aligns corresponding pixels) and
texture (geometrically rectified image). Shape and texture of an
image class (now defined by a set of features admitting one-to-one
correspondences)make up highly redundant separated sets [9], and
admit PCA-based compaction.

3.1. Representation operators

We want to represent images Ik; (k = 1; : : : ; m) of n� n pixels,
belonging to the same image class. Each image Ik is related
to a class reference image R through a shape vector field Sk =
(∆x;∆y)[n�n] (coordinates of every pixel of Ik in respect toR) and
a texture matrix Tk (intensity differences between corresponding
pixels in Ik and R). Texture can be found by subtractingR from
shape-normalized Ik:

Tk (x; y) = Ik [x� ∆x(x;y); y � ∆y(x; y)]�R(x; y) (1)

We define two operators Sk = shape
�
Ik;R

�
and Tk =

texture
�
Ik;R

�
to perform shape and texture extraction. Recon-

struction is performed by the inverse of equation (1):

rec
�
R;Tk ;Sk

�
(x;y)

= Tk

�
x+ ∆x(x;y); y+ ∆y(x;y)

�
+

+ R
�
x+ ∆x(x;y); y + ∆y(x;y)

�
(2)Figure 1 illustrates this proces.

3.2. Shape estimation

We now investigate two ways of implementing the shape() opera-
tor. The first method uses f manually identified features in a small
set of l images. Their coordinates ck (of size [f � 2]) are used in
the following way:

1. Find the mean value c̄[f�2] of all features.

2. Compute shape for every image (k = 1; : : : ; l):

i) Find the displacementof each feature, with respect to the
reference: dk = ck � c̄.

ii) Build Sk (x; y) by interpolating for every pixel.

Figure 1: Reconstruction from shape and texture: a) Reference;
b) Texture; c) Texture + reference; d) Shape; e) Reconstruction;
f) True image; g) Reconstruction error.

3. Build the reference image by point-wise averaging all shape-
normalized images:

R =
1
l

lX
k=1

�
rec�1

�
Ik;0;Sk

��
(3)

rec�1
�
Ik;Tk;Sk

�
= rec

�
Ik;0;�rec

�
Sk;0;Sk

��
�Tk

(4)

4. Find the textures by subtracting the reference from each shape-
normalized image: Tk = rec�1

�
Ik;0;Sk

�
�R

At this point we can feed this reference image R into an
automatic procedure for the whole set ofm images. This procedure
is a best-fit block search algorithm. The displacement Sk (x;y)
maximizes the normalized cross-correlation (see [4]) betweend�d
blocks in the image Ik and in the referenceR.

Since shape and texture representation is not unique (differ-
ences in shape deformations can be canceled by texture modifica-
tions), we used a multi-resolution procedure to impose smoothing
constraints and to speed up the search.

In order to avoid the errors coming from differences on corre-
spondent pixel intensities, we performed an iterative improvement
of shape and texture. Start by considering zero textures (Tk = 0),
and proceed with:

1. Compute the shapeSk = shape
�
Ik;R+Tk

�
for all images

(k = 1; : : : ;m), using multi-resolution best-fit block search.

2. Compute SVD of shape and texture collections. If sk and tk
are the column vector versions of Sk and Tk , factorize:�
s1j � � � jsm

�
= usΣvT

s and
�
t1j � � � jtm

�
= utΣvT

t .

3. Project the shape over a reduced base u(l)
s (first l components):

s(l)
k = u(l)

s

�
sTku

(l)
s

�T
.

4. Compute the texture associated to each s(l)
k ; if S(l)

k is the matrix
form of s(l)

k , then: Tk = rec�1
�
I;0;S(l)

k

�
�R.

5. Project the computed textures over the reduced base u(l)
t (first

l components): t(l)
k = u(l)

t

�
tTku

(l)
t

�T
, and reorganize it in

matrix form T(l)
k .

6. Update Sk = S(l)
k and Tk = T(l)

k , and go back to step 1.

Beymer [1] shows that a procedure of this sort converges to
solutions insensible to data noise.

4. SYNTHESIS

Synthesizing a face image is equivalent to generating trajectories in
the face image space Cfaces (in its shape and texture representation)
by acting on high-level parameters. Imagine, for example, that you
want to grow the face’s nose, or give it an angry look. This is
achieved by introducing the concept of extreme prototype, which
will allow us to easily perform the desired smooth trajectories.

4.1. Prototypes

A prototype is defined as a point in Cfaces that represents a cer-
tain combination of classification parameter values. Extreme pro-
totypes have a few parameters with values close to the sampled
extremes and all other with average values. An extreme prototype
is associated with a set of boundary-valued parameters (imposed
properties) and a set of average-valued parameters.



Figure 2: Approximation of p3 by successive displacements to-
wards p1 and p2.

Section 5 will confirm that using separated shape and texture
representation provides a convex face-set and monotonous property
mappings. So, averaging shape fields and texture matrices ofn pre-
classified samples with extreme values on parameter l will result
on an extreme prototype having:8><

>:
SP (l) =

P
n

k=1
Sk(l)

n

TP (l) =

P
n

k=1
Tk(l)

n

(5)

Using large n assures non-biased averaged properties.

4.2. Using prototypes to perform image synthesis

Starting from a random face image, synthesis is performed using
the prototypes in one of the following ways:

1. Local evolution from the present suggested shape and texture
x towards the extreme prototype pl holding the desired
properties: x0 = x+� � (pl � x). The parameter � << 1
is the fraction of distance between x and pl displaced each
time. Figure 2 illustrates the application of this method to
approximate p3. Note that it is sufficient to memorize a
few elementary prototypes (those with only one imposed
property), but the synthesized trajectory will never reach
the desired point p3. This method cannot extrapolate the
convex hull of the elementary prototypes!

2. Extrapolation can be accomplishedusing: x0 = x+��pl. This
method was named as Parallel Deformation by Beymer and
Poggio [2]. The procedure can be used to apply the trans-
formation between two examples I1 = rec

�
R;T1;S1

�
and I2 = rec

�
R;T2;S2

�
to modify a third image I3 =

rec
�
R;T3;S3

�
:

a) Measure the changes ∆S in shape and ∆T in texture
from I1 to I2, by:�

∆S = shape
�
I2; I1

�
∆T = texture

�
I2; I1

� (6)

b) Modify I2 using these changes with the appropriate ge-
ometric normalization: I4 = rec

�
R0;0;S4

�
, with:8<

:
R0 = rec

�
R;T3 + rec�1

�
∆T;0;S1

�
;S3

�

S4 = rec
�
rec�1

�
∆S;0;S1

�
;0;S3

�
(7)

3. Mixed method, following the average of the directions found
in 1. and 2.: x0 =

�
1 � �=2

�
� x+ � �pk .

One of these local evolution procedures is incorporated in step
ii) of the following iteration:

Figure 3: Leading 3 principal components of shape and texture
sets, and their effect over the average face 0.

Figure 4: Reconstruction of an example (left) from memorized
shape and texture (center) and using 40 PCA components (right).

i) ask the witness for some assured properties and compute non-
elementary prototypes that will be used as first approxima-
tions;

ii) ask for changes and travel in face set using one of the previous
local-evolution methods;

iii) if local evolution is unsuccessful, return to step ii) choosing a
new initial prototype.

Avoiding subjective descriptions requires a careful picking of
accepted properties. We followed the recommendations in [4] and
adopted a three-level domain for each parameter. At the end, the
synthesized image can be submitted to a post-processing stage to
add some extra features (like hair or glasses) and change facial
expression.

5. RESULTS

In this section we start by describing the details of our system.
We then show how to experimentally verify the properties of our
image representation. Finally, some examples of image synthesis
are presented.

We gathered a set of 1500 digitized images (128 � 128 pix-
els and 32 gray-levels) of Caucasian male faces. The shape and
texture separation procedure described in section 3.2 was applied
to the image set. An initial reference was built using the feature-
based method over 50 images with 63 manually marked features.
The number of retained PCA components (in the iterative shape
estimation) was chosen taking in account the visual quality of re-
constructions. Letting less than 10% of the pixels have errors
greater than 3 levels (a visually good criterion) lead to 40 principal
components for each space. Figure 3 shows some of the com-
puted principal components. Observe the dominance of pose and
illumination; this adverts to insufficient image normalization.

The properties of our representation were experimentally ver-
ified. Representation fidelity tests were extensively performed.
Figure 4 shows a particular case, and it can be seen that the recon-
struction error is small.

To check the closedness of Cfaces in our representation, we
randomly generated points in this space. Figure 5 contains exam-
ples. In every case, valid face images were generated (they all
belong to Cfaces), so this is a closed representation of Cfaces.



Figure 5: Some random examples. Their validity shows that the
representation is closed.

Figure 6: Some pairs of elementary prototypes, with imposed prop-
erties of: a) Mouth width; b) Nose to mouth distance; c) Eyebrow
separation; d) Nose length; e) Eye opening.

The convexity of Cfaces is verified if the average of examples
is itself a valid face image. Figure 6 shows this in the case of the
prototypes. They are built by averaging several images, and they
are themselves valid face images.

We can also conclude that the mappings between images and
the classification space are monotonous, because averaging any
pair of opposing extremes will result on the average face. The
average of, say, the images in figure 6-a is the image 0 in figure 3.

In an off-line procedure, all images were jury-classified ac-
cording to pose, expression, age, physique, illumination and skin
texture. Measures of width, length, slope and relative position of
main face features were performed semi-automatically, completing
the list of describing properties.

Figure 6 shows some examples of obtained elementary proto-
types, in pairs of opposing extremes. Figure 7 shows samples of
output sequences from our system, using two different strategies to
explore the prototypes, starting from the same random face (left).
The last column has the desired image. The storage of only some
elementary prototypes allows the system to work in real time and
to use only a negligible amount of memory.

The use of pure parallel deformation failed because it is im-
possible to control the coordinate bounds. After a few iterations
the generated points are way beyond the sampled border of Cfaces.
The mixed method yields consistently faster and more accurate
convergence of the synthesis iterations (section 4.2), because it can
extrapolate the convex hull of the elementary prototypes.

We verified that, using any of the successful strategies, it is
impossible to violate the anthropomorphic constraints: when the
user indicates local changes, a set of highly correlated proper-
ties is changed. For example, when one increases mouth width,
expression changes to smile.

Finally, figure 8 exemplifies the application of parallel defor-
mation to change facial expressions (this could be used as one of
the post-processing mechanisms referred in section 4.2).

Figure 7: Examples of controlled image evolution: a) Using pro-
totype directions; b) Using the mixed method.

Figure 8: Synthesized facial expressions. The top row contains
examples of a reference face. In bottom row, all but the leftmost
images are synthesized by application of the exemplified changes.

6. CONCLUSION

Our need to increase data redundancy suggested the use of a sepa-
rated shape and texture representation. We defined the concept of
elementary prototype, as being an image with an extreme value for
a single property and average values for the rest. The convexity
of shape and texture sets and the monotony of the mappings be-
tween these sets and the property space altogether allowed us to
build these prototypes by simply averaging shape and texture of
many images. This prototype-based approach requires the storage
of only a limited set of images.

The closedness, fidelity and convexity properties of the repre-
sentation were experimentally verified. Experiments also showed
that our system does not allow the physiognomic constraints to be
violated, so the desired holistic performance was attained.

Future work should be conducted on careful normalization of
the original images, especially in illumination, pose and facial ex-
pression. A full system should also include some post-processing
and high-level interface mechanisms, including the ability to man-
age a careful interview. We also feel that the concept of extreme
prototype can be further exploited in representation and trajectory
generation.
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