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ABSTRACT

This paper presents a method to automatically synthesize human
faceimagesfrom holistic descriptions. We compactly represent the
face set by a small set of prototypes, which can be used in simple
ways to generate controlled morphings. This becomes possible
because separation of 2D-shape and texture provides a faithful,
closed and convex representation of images, and smoothes the
mappings betweenimagesandtheir properties. With thisapproach,
the user watches an image being continuously morphed according
to his indications, and the synthesized images always obey the
natural physiognomic constraints.

1. INTRODUCTION

Police investigation often requires a face sketch to be drawn from
adescription. Traditional patchwork systemsthat combine typical
face parts (composite pictures) require very qualified human oper-
ators and usually produce unrealistic results. With our approach,
anon-specialized user describesaface using global characteristics
(like typical expression or physique) and watches an image being
continuously morphed accordingly. Even when indications are in-
herently local (like feature size) the results will obey the natural
physiognomic constraints.

1.1. Approach and Contribution

In order to easethe generation of smooth morphings, animagerep-
resentation should meet some requirements. We show why sepa-
rated 2D-shape and texture representations meet theserequirements
and we also describeamethod of computing this representation au-
tomatically.

Shape and texture representation allows us to identify well
defined regions corresponding to certain face characteristics. We
introduce the concept of extreme prototype to represent these re-
gionsandtoindicate directionsthat lead to the desired monotonous
changesin face characteristics.

1.2. PreviousWork

This synthesis paradigm wasfirst used in binary imagesby Ullman
and Basri [8]. Poggio and Brunelli [6], extended the approach to
gray-level images, using shape and texture representation. Since
then, shape and texture separation has been widely used in recog-
nition [2] and image manipulation [9, 7]. However, as far as we
know, this is the first application to the synthesis of images of
faceswith completely newidentity. Recently, Cooteset al (see[5])
use shape and texture separation in a representation model with a
promising range of high quality applications.

2. ASYNTHESISPARADIGM

A discrete image I}, «,,) can be interpreted as a vector 1in the
n2-dimensional space Siymag., Whose coordinate i, 4, x (y—1) COr-
respondsto pixel (z, y). Thesubset of Siyage CcOntaining all faces
(Cfaces) includesimages varying in pose, rotation, scaling, illumi-
nation, facial expression and identity. In [3], Bichsel and Pentland
show that, if we exclude binary-type modifications (like adding of
glasses), these images form a visually homogeneous image class,
where any pair of points can be joined by a continuous line, itself
contained in Csqces. Thismeansthat Cs .. iS connected.

2.1. Direct synthesisparadigm and itsdistinction

The connectivity of Cyac.s alows us to synthesize smooth image
seguencesin a given class by generating continuous trajectories
inside the correspondent image subset. Trajectories should be
generated according to high level descriptions, so this synthesis
paradigminvolvesinverting the image-to-classification mappings,
which can be learned from examples. This contrasts with the
traditional approachesthat resort to physical modelsand rendering.

Example-based face image synthesis is a usua solution to
mor phing (interpolation between two given examples) and feature
modification (pose, illumination, age and expressionchanges). Our
paradigm extends to a broader concept of parameter-controlled
extrapolation of an exampleset, allowing usto changefaceidentity.

2.2. Direct synthesis: main features

Continuous parameter-to-image mappings must be learned from
examples. Dueto the curseof dimensionality, the huge dimension-
ality of Cyqc. imposesthat too many examples must be gathered,
urging to the use of a compact data representation. Furthermore,
Cyaces 1S highly non-convex because of the nonlinearities between
edge positions and pixel intensity — see [3]. Generalization from
examples is an ill-posed problem, so our representation has to
provide smooth mappings so that regularization constraints make
sense. In short, a good representation must comply with the com-
promise amongitsfidelity, smoothnessand closedness. In section5
we show how to experimentally demonstrate the properties of our
image representation.

Human intervention brings other difficulties, since witnesses
provide very incomplete and subjective descriptions. Thisiswhy
photo-fit operators are usually psychologistswith artistic skills.



3. SEPARATED SHAPE AND TEXTURE
REPRESENTATION

Most of the stated difficulties can be overtaken by picking the
appropriate representation. Compaction requires data redundancy,
that is, requires some correlation among al imagesin our set. An
effective way of increasing image correlation is feature alignment
by geometric deformation. Unlike low-passfiltering (usual choice
for redundancy enhancement), geometric deformation can be easily
memorized and inverted. So, if deformation takes part in the
representation, the original images can be recovered.

This suggests a representation made of two parts: 2D-shape
(a geometric deformation that aligns corresponding pixels) and
texture (geometrically rectified image). Shape and texture of an
image class (now defined by a set of features admitting one-to-one
correspondences) make up highly redundant separated sets[9], and
admit PCA-based compaction.

3.1. Representation operators

We want to representimages I, (k = 1,..., m) of n x n pixels,
belonging to the same image class. Each image I is related
to a class reference image R through a shape vector field S, =
(Az, Ay);,, « ) (coordinatesof every pixel of I inrespectto R) and
atexture matrix T« (intensity differences between corresponding
pixelsin I, and R). Texture can be found by subtracting R. from
shape-normalized I;:

Ti(z,y) = In [z — De(z,9),y — Dy(z, 9)] — Rz, 9) (1)

We define two operators S, = shape (I, R) and Ty =
testure (Ix, R) to perform shapeand texture extraction. Recon-
struction is performed by the inverse of equation (1):

rec(R,Tk,Sk) =

- T [I + Az (z,y), ¥y + Ay(myy)] +

+ R [75 + 82,y + Ay(r,y)]
Figure 1 illustrates this proces. (2)

3.2. Shapeestimation

We now investigate two ways of implementing the shape() opera-
tor. Thefirst method uses f manually identified featuresin asmall
set of I images. Their coordinates c;. (of size[f x 2]) are usedin
the following way:

1. Find the mean value c[; 7 of all features.
2. Compute shapefor every image (k = 1,...,1):

i) Find the displacement of each feature, with respect to the
reference: d, = ¢ — c.

ii) Build Sk (=, y) by interpolating for every pixel.
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Figure 1: Reconstruction from shape and texture: a) Reference;
b) Texture; c) Texture + reference; d) Shape; e) Reconstruction;
f) True image; g) Reconstruction error.

3. Build the reference image by point-wise averaging all shape-

normalized images:
!

R=13[rec™ (1.,0,54)] )

k=1

ec™t (Ik, Te, Sk) = rec [Ik, 0, —rec (Sk, 0, Sk)] — T

(4)

4. Find the textures by subtracting the reference from each shape-
normalizedimage: Ty = rec™ (I, 0,S:) - R

At this point we can feed this reference image R into an
automatic procedurefor thewhole set of m images. Thisprocedure
is a best-fit block search algorithm. The displacement S (=, v)
maximizesthe normalized cross-correlation (see[4]) betweend x d
blocksin theimage I; and in the reference R.

Since shape and texture representation is not unique (differ-
encesin shape deformations can be canceled by texture modifica-
tions), we used a multi-resolution procedure to impose smoothing
constraints and to speed up the search.

In order to avoid the errors coming from differences on corre-
spondent pixel intensities, we performed an iterative improvement
of shapeand texture. Start by considering zero textures (T, = 0),
and proceed with:

1. Computethe shape Sy, = shape (I, R + T) for all images
(k =1,..., m),using multi-resolution best-fit block search.

2. Compute SVD of shape and texture collections. If s and tx
are the column vector versions of Sy and T, factorize:
[sl| e |sm] =u,Zv! and [t1| ‘e |tm] =u3v{.

3. Project the shape over areduced base ul”(first I components):
s® — O (STum)T
E T HYs kE Ys .

4. Computethe texture associatedto each s{; if S isthe matrix
formof s, then: T = rec™ (1,0,8¢) — R.

5. Project the computed textures over the reduced base u'® (first
1 components): t¥ = u® (t{uﬁ”)T, and reorganize it in
matrix form T

6. Update Sy = S¥ and T, = T, and go back to step 1.

Beymer [1] shows that a procedure of this sort converges to
solutionsinsensible to data noise.

4. SYNTHESIS

Synthesizing afaceimageis equivalentto generating trajectoriesin
thefaceimage spaceC ... (initsshapeand texture representation)
by acting on high-level parameters. Imagine, for example, that you
want to grow the face's nose, or give it an angry look. Thisis
achieved by introducing the concept of extreme prototype, which
will allow usto easily perform the desired smooth trajectories.

4.1. Prototypes

A prototype is defined as a point in Csqc.. that represents a cer-
tain combination of classification parameter values. Extreme pro-
totypes have a few parameters with values close to the sampled
extremes and all other with average values. An extreme prototype
is associated with a set of boundary-valued parameters (imposed
properties) and a set of average-valued parameters.
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Figure 2: Approximation of ps by successive displacements to-
wards p; and pa.

Section 5 will confirm that using separated shape and texture
representation providesaconvex face-set and monotonous property
mappings. So, averaging shapefieldsand texture matricesof n pre-
classified samples with extreme values on parameter { will result
on an extreme prototype having:

Sy () = Yo Sk

n

T (5)
T () = 2osm 10

Using large n assures non-biased averaged properties.
4.2. Using prototypesto perform image synthesis

Starting from a random face image, synthesisis performed using
the prototypesin one of the following ways:

1. Local evolution from the present suggested shape and texture
x towards the extreme prototype p: holding the desired
properties: x’ = x + o - (p: — X). Theparameter o << 1
is the fraction of distance between x and p; displaced each
time. Figure 2 illustrates the application of this method to
approximate ps. Note that it is sufficient to memorize a
few elementary prototypes (those with only one imposed
property), but the synthesized trajectory will never reach
the desired point ps. This method cannot extrapolate the
convex hull of the elementary prototypes!

2. Extrapolation canbeaccomplishedusing: x’ = x+a-p;. This
method was named as Par allel Defor mation by Beymer and
Poggio [2]. The procedure can be used to apply the trans-
formation between two examples Iy = rec (R, T4, S1)
and I = rec (R, T2, S;) to modify athird image I =
rec (R, T3, Sg):

a) Measure the changes AS in shape and AT in texture
from I; to I, by:
AS = shape (Iz, Il) (6)
AT = texture (Iz, Il)

b) Modify I, using these changeswith the appropriate ge-
ometric normalization: Iy = rec (R’, 0, S4), with:

R’ = rec [R, T3 + rec™? (AT, 0, Sl) , 53]

Ss = rec [rec_l (AS, 0, Sl) ,0, S3]
(7
3. Mixed method, following the average of the directions found
inl and2:x' = (1-a/2) X+ a-px.

One of theselocal evolution proceduresisincorporated in step
ii) of the following iteration:
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Figure 3: Leading 3 principal components of shape and texture
sets, and their effect over the averageface 0.
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Figure 4: Reconstruction of an example (left) from memorized
shape and texture (center) and using 40 PCA components (right).

i) ask the witness for some assured properties and compute non-
elementary prototypesthat will be used as first approxima-
tions;

ii) ask for changesand travel in face set using one of the previous
local-evolution methods;

iii) if local evolution is unsuccessful, return to step ii) choosing a
new initial prototype.

Avoiding subjective descriptions requires a careful picking of
accepted properties. We followed the recommendationsin [4] and
adopted a three-level domain for each parameter. At the end, the
synthesized image can be submitted to a post-processing stage to
add some extra features (like hair or glasses) and change facia
expression.

5. RESULTS

In this section we start by describing the details of our system.
We then show how to experimentally verify the properties of our
image representation. Finally, some examples of image synthesis
are presented.

We gathered a set of 1500 digitized images (128 x 128 pix-
els and 32 gray-levels) of Caucasian male faces. The shape and
texture separation procedure described in section 3.2 was applied
to the image set. Aninitial reference was built using the feature-
based method over 50 images with 63 manually marked features.
The number of retained PCA components (in the iterative shape
estimation) was chosen taking in account the visual quality of re-
constructions. Letting less than 10% of the pixels have errors
greater than 3 levels (avisually good criterion) lead to 40 principal
components for each space. Figure 3 shows some of the com-
puted principal components. Observe the dominance of pose and
illumination; this adverts to insufficient image normalization.

The properties of our representation were experimentally ver-
ified. Representation fidelity tests were extensively performed.
Figure 4 shows a particular case, and it can be seen that the recon-
struction error is small.

To check the closedness of Csac.s in our representation, we
randomly generated pointsin this space. Figure 5 contains exam-
ples. In every case, valid face images were generated (they all
belong to Cqces), Sothisisa closed representation of Craces.
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Figure 5: Some random examples. Their validity shows that the
representation is closed.
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Figure6: Some pairsof elementary prototypes, with imposed prop-
ertiesof: a) Mouth width; b) Noseto mouth distance; c) Eyebrow
separation; d) Noselength; €) Eye opening.

The convexity of Csa... is verified if the average of examples
isitself avalid faceimage. Figure 6 shows thisin the case of the
prototypes. They are built by averaging several images, and they
are themselves valid face images.

We can also conclude that the mappings between images and
the classification space are monotonous, because averaging any
pair of opposing extremes will result on the average face. The
average of, say, theimagesin figure 6-ais theimage 0 in figure 3.

In an off-line procedure, all images were jury-classified ac-
cording to pose, expression, age, physique, illumination and skin
texture. Measures of width, length, slope and relative position of
main facefeatureswere performed semi-automatically, completing
thelist of describing properties.

Figure 6 shows some examples of obtained elementary proto-
types, in pairs of opposing extremes. Figure 7 shows samples of
output sequencesfrom our system, using two different strategiesto
explore the prototypes, starting from the same random face (left).
The last column has the desired image. The storage of only some
elementary prototypes allows the system to work in real time and
to use only a negligible amount of memory.

The use of pure parallel deformation failed becauseit is im-
possible to control the coordinate bounds. After afew iterations
the generated points are way beyond the sampled border of Cqce.
The mixed method yields consistently faster and more accurate
convergenceof the synthesisiterations (section 4.2), becauseit can
extrapolate the convex hull of the elementary prototypes.

We verified that, using any of the successful strategies, it is
impossible to violate the anthropomorphic constraints: when the
user indicates local changes, a set of highly correlated proper-
ties is changed. For example, when one increases mouth width,
expression changesto smile.

Finally, figure 8 exemplifies the application of parallel defor-
mation to change facial expressions (this could be used as one of
the post-processing mechanismsreferred in section 4.2).

Figure 7: Examples of controlled image evolution: @) Using pro-
totype directions; b) Using the mixed method.

@@@@E
Figure 8: Synthesized facial expressions. The top row contains

examples of a reference face. In bottom row, all but the leftmost
images are synthesized by application of the exemplified changes.

6. CONCLUSION

Our need to increase data redundancy suggested the use of a sepa-
rated shape and texture representation. We defined the concept of
elementary prototype, as being an image with an extreme value for
a single property and average values for the rest. The convexity
of shape and texture sets and the monotony of the mappings be-
tween these sets and the property space altogether allowed us to
build these prototypes by simply averaging shape and texture of
many images. This prototype-based approach requires the storage
of only alimited set of images.

The closedness, fidelity and convexity properties of the repre-
sentation were experimentally verified. Experiments also showed
that our system does not allow the physiognomic constraintsto be
violated, so the desired holistic performance was attained.

Future work should be conducted on careful normalization of
the original images, especially in illumination, pose and facial ex-
pression. A full system should also include some post-processing
and high-level interface mechanisms, including the ability to man-
age a careful interview. We also feel that the concept of extreme
prototype can be further exploited in representation and tragjectory
generation.
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