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ABSTRACT

This paper presents a new neural solution for solving the data as-
sociation problem. This problem, also known as the multidimen-
sional assignment problem, arises in data fusion systems like radar
and sonar targets tracking, robotic vision... Since it leads to an
NP-complete combinatorial optimization, the optimal solution can
not be reached in an acceptable calculation time, and the use of
approximation methods like the Lagragian relaxation is necessary.
In this paper, we propose an alternative approach based on a Hop-
field neural model. We show that it converges to an interesting
solution that respects the constraints of the association problem.
Some simulation results are presented to illustrate the behaviour
of the proposed neural solution for an artificial association prob-
lem.

1. INTRODUCTION

The multidimensional assignment problem typically arises when
several sensors observe the same environment. The data associa-
tion process have to find which data correspond to the same ob-
ject. The associations are generally decided in order to minimize a
global criterion, using a kind of distance between the data of each
sensor. The optimization of this criterion is the aim of this article.
This problem also corresponds to an equivalent situation: a sensor
observes the environment at several distinct moments. The asso-
ciation problem then consists in finding which data of each scan
are generated by the same object. This situation essentially groups
sonar and radar targets tracking [7].
If only two sensors are used, some algorithms [1] find the optimal
solution in a acceptable calculation time. But when more than two
sensors are considered, the problem becomes NP-complete and the
optimal solution is not reachable even for a small amount of data.
An approximation method is then necessary. Lagrangian relax-
ation method is generally chosen [2, 3, 4], but we show in this
article that a Hopfield neural network is an interesting alternative
that delivers an near optimal solution that respect the constraints
of the optimization problem.
In the next section, we present the problem formulation and we de-
scribe the criterion to be optimized. Section 3 proposes our neural
solution to the association problem. Some simulation results are
presented in section 4 and concluding remarks are made in section
5.

2. PROBLEM FORMULATION

We define the following notations:

� n the number of sensors (or the number of scans),

� z
j
ij

ij 2 f0; ::;mjg, j 2 f1; ::; ng the ij -th data of the

j-th sensor. We also introduce adummydatazj0 that will
encode the fact that no data from sensorj is used,

� Z the set of allreal data,i.e. excepted dummy datazj0,

� Zi1i2::in = fz1i1z
2
i2
; ::; zning a data association,

� � = fZi1i2 ::ing a partitioning of the data,

A partitioning� is submitted to the following constraints:

(i) a data can not be used twice:

\
Zi1i2::in

2�

(Zi1i2::in \ Z) = ; (1)

We have to consider the intersectionZi1i2::in \ Z because
a dummy association can be used twice.

(ii) each data must be used exactly once:

[
Zi1i2::in

2�

(Zi1i2::in \ Z) = Z (2)

A cost ci1i2::in is also associated to each associationZi1i2::in .
The goal of the multidimensional assignment process is to find the
partitioning�� so that:

�� = argmin
�2


X
Zi1i2::in

2�

ci1i2::in (3)

where
 is the set of all possible partitioning�, i.e.
 = f�g.
If we define:

�i1i2::in =

�
1 if Zi1i2 ::in 2 ��

0 otherwise
(4)



The search of partitioning�� is equivalent to finding the values of
the binary variables�i1i2::in that minimize:

� =

m1X
i1=0

::

mnX
in=0

�i1i2::inci1i2 ::in (5)

under the constraints:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

m2X
i2=0

::

mnX
in=0

�i1 ::in = 1 8i1 2 f1::m1g

m1X
i1=0

m3X
i3=0

::

mnX
in=0

�i1::in = 1 8i2 2 f1::m2g

...
m1X
i1=0

::

mn�1X
in�1=0

�i1::in = 1 8in 2 f1::mng

(6)

another expression of the constraints can be:8�i1::in

�i1::in = 1()

(1� �i10)

m2X
i0
2
=0

::

mnX
i0n=0

 
1�

nY
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�iji0j
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�i1i02::i

0

n

+:: (7)

+ (1 � �in0)

m1X
i0
1
=0

::

mn�1X
i0
n�1

=0

 
1 �

n�1Y
j=1

�ij i0j

!
�i0

1
::i0

n�1
in = 0

where�ij is the Kronecker symbol:

�ij =

�
1 if i = j

0 otherwise
(8)

Equation7 can be rewritten as :

�i1::in = 1() (9)

m1X
i0
1
=0

::

mnX
i0n=0

nX
j=1

�iji0j

�
1� �ij0

�0B@1� nY
l=1
l6=j

�ili0l

1
CA�i0

1
:::i0n

= 0

3. NEURAL OPTIMIZATION

We propose to develop a Hopfield neural network that approxi-
mates a near optimal solution of the minimization of criterion 5
under constraints 9. The network minimizes the following energy :

EH =

m1X
i1=0

::

mnX
in=0

ci1:::in f(xi1::in ) (10)

+
1

2

m1X
i1=0

::

mnX
in=0

m1X
i0
1
=0

::

mnX
i0n=0

W
i1 ::in
i0
1
::i0n

f(xi1::in )f(xi0
1
::i0n

)

+

m1X
i1=0

:::

mnX
in=0

Z xi1::in

0

"f
0(")d"

wheref is the sigmoid function:

f(x) =

�
1

1 + e�4px

�
(11)

wherep is the slope of the function. The weightsW i1::in
i0
1
::i0n

are given

by:

W
i1 ::in
i0
1
::i0n

= C

nX
j=1

2
64�ij i0j �1 � �ij0

�
0
B@1� nY

l=1
l6=j

�ili0l

1
CA
3
75 (12)

whereC is a positive parameter. Each possible association�i1:::in
is represented by a neuron denotedxi1:::in . At convergence, the
values of the variables�i1:::in is given by the outputs of the neu-
rons,i.e. �i1:::in = f(xi1::in ).

The first term of energyEH clearly corresponds to the minimiza-
tion of the criterion 5. The second term is associated to the con-
straints 9. The last term is necessary to ensure that the network
converges properly, but its influence is generally neglected by con-
sidering that the sigmoid function is sharp enough.
In the discrete time case, the neuron update rule that ensures the
minimization ofEH is given by [5]:

xi1::in (k) = �ci1::in �

m1X
i0
1
=0

::

mnX
i0n=0

W
i1 ::in
i0
1
::i0n

f(xi0
1
::i0n

(k � 1))

(13)

We are now going to proove that the solution obtained at the con-
vergence verifies the constraint7, under the condition:

�1 < ci1:::in < 0 (14)

It is shown in appendiceA that it is always possible to transform
the costsci1:::in so that they verify 14, without changing the opti-
mization process; thus, we will consider in the follwing that 14 is
respected.
Theorem 1: neurons statesxi1:::in converge.
Proof: we know [6] that neurons outputs converge,i.e.:

lim
k!1

f(xi1:::in (k)) = y
0
i1:::in

; 8i1; ::; in (15)

wherey0i1:::in represents the ouput of thei1:::in-th neuron, at con-
vergence. Using 13, we can write :

lim
k!1

xi1 :::in (k)

= lim
k!1

2
4�ci1::in �

m1X
i0
1
=0

::

mnX
i0n=0

W
i1 ::in
i0
1
::i0n

f(xi0
1
::i0n

(k))

3
5

= lim
k!1

2
4�ci1::in �

m1X
i0
1
=0

::

mnX
i0n=0

W
i1 ::in
i0
1
::i0n

y
0
i0
1
::i0n

3
5

= x
0
i1 ::in

; 8i1; ::; in (16)



wherex0i1:::in is the neuron state at convergence.

Theorem 2: neurons outputs converge to values inf0; 0:5; 1g
when the slopep of the sigmoid function tends toward infinity.
Proof: we have:

y
0
i1:::in

= f(x0i1:::in ) (17)

=
1

1 + e
�4px0

i1:::in
(k)

and:

lim
p!1

f(x) =

8<
:

0 six < 0
0:5 six = 0
1 six > 0

(18)

using 17 and 18, proof is evident.

Theorem 3: neurons outputs converge to values inf0; 1g if C >

2.
Proof: we have to show that the casex0i1:::in = 0 is impossible.
At convergence, 13 can be rewritten as follows :

x
0
i1:::in

= �ci1::in �

m1X
i0
1
=0

::

mnX
i0n=0

W
i1 ::in
i0
1
::i0n

y
0
i0
1
::i0n

(19)

We prooved thaty0i0
1
:::i0n

2 f0; 0:5; 1g. Moreover, the weights
described in 12 equals0 orC, thus 19 leads to:

x
0
i1:::in = �ci1:::in �

�C

2
= 0 with � 2 IN

+ (20)

So, ifC > 2 it is easy to see thatx0i1:::in = 0 is impossible.

Theorem 4: solution given by the neural network at convergence
verifies the constraint7.
Proof: we denoteA the proposition “y0i1:::in = 1”, andB the
proposition:

m1X
i0
1
=0

::

mnX
i0n=0

nX
j=1

�iji0j

�
1� �ij0

�
0
B@1� nY

l=1
l6=j

�ili0l

1
CA y

0
i0
1
:::i0n

= 0 (21)

Constraint7 is verified if we have:

A() B (22)

or: B ) A (23)

and B ) A (24)

whereA represents the proposition y0i1:::in = 0, andB is:

m1X
i0
1
=0

::

mnX
i0n=0

nX
j=1

�iji0j

�
1� �ij0

�0B@1� nY
l=1
l6=j

�ili0l

1
CA y

0
i0
1
::i0n

> 0 (25)

First, we show thatB ) A:

B ()

m1X
i0
1
=0

::

mnX
i0n=0

nX
j=1

�iji0j

�
1� �ij0

�0B@1� nY
l=1
l6=j

�ili0l

1
CA y

0
i0
1
::i0n

= 0

Multiplying by a constantC 6= 0 leads to:

B )

m1X
i0
1
=0

::

mnX
i0n=0

nX
j=1

C�iji0j

�
1� �ij0

�0B@1� nY
l=1
l6=j

�ili0l

1
CA y

0
i0
1
::i0n

= 0

)

m1X
i0
1
=0

:::

mnX
i0n=0

W
i1 :::in
i0
1
:::i0n

y
0
i0
1
:::i0

n�1
in

= 0 (26)

using 19 and 14, this leads to:

B ) x
0
i1:::in

= �ci1:::in > 0 (27)

and: B ) y
0
i1:::in

= 1 (28)

showing thatB ) A. We must now verify thatB ) A:

B ()

m1X
i0
1
=0

::

mnX
i0n=0

nX
j=1

�iji0j

�
1� �ij0

�0B@1� nY
l=1
l6=j

�ili0l

1
CA y

0
i0
1
::i0n

> 0

We prooved thaty0i0
1
:::i0n

2 f0; 1g; so, multiplying by a constant
C 6= 0 leads to:

B )

m1X
i0
1
=0

::

mnX
i0n=0

nX
j=1

C�ij i0j

�
1� �ij0

�0B@1� nY
l=1
l 6=j

�ili0l

1
CA y

0
i0
1
::i0n

=> C

addingci0
1
:::i0n

and multiplying by�1 show that:

B )

�ci1:::in �

m1X
i0
1
=0

:::

mnX
i0n=0

W
i1:::in
i0
1
:::i0n

y
0
i0
1
:::i0n

<= �ci1:::in�C

if C > 2 we can write:

B ) x
0
i1:::in

< 0 (29)

) y
0
i1 :::in

= 0 (30)

which shows thatB ) A.



4. SIMULATIONS RESULTS

We made some simulations in order to examine the behaviour of
the proposed neural method. We consider four sensors delivering
points in the 2 dimensional plan. The goal of the data association
is to form figures with2, 3 or 4 points, each figure containing at
most one data of each sensor. The cost of each association is the
perimeter of the figure divided by its number of segments (i.e. 1
segment for a2 points association,3 segments for a3 points asso-
ciation and4 segments for a4 points association). We have gener-
ated50 different association problems and we have computed the
optimal solution for each of them.17:4% of the solutions given
by our network are optimal ones, and the mean error between the
optimal solution and the obtained solution equals2:7%. 100% of
the obtained solutions verify the constraints.

5. CONCLUSION

We proposed a neural approach to solve the data association prob-
lem that arises in data fusion systems or in radar [7] and sonar [2]
tracking. We prooved that the obtained solution always verifies the
constraints of the problem, and some simulations showed that our
approach always converges to a near optimal solution.
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A. COSTS NORMALIZATION

We show in this section that it is possible to change the costsci1::in
into the costsCi1::in = ci1::in +

Pn

j=1 a
j
ij

, with a
j
0 = 0 8j 2

f1; ::; ng, without changing the optimization process. We define:

J =

m1X
i1=0

:::

mnX
in=0

Ci1::in�i1::in (31)

Expression of criterionJ can be rewritten as follows:

J =

m1X
i1=0

:::

mnX
in=0

Ci1::in�i1::in

=

m1X
i1=0

:::

mnX
in=0

 
ci1::in +

nX
j=1

a
j
ij

!
�i1::in

= �+

m1X
i1=0

:::

mnX
in=0

 
nX

j=1

a
j
ij

!
�i1::in (32)

We must show that the second term of 32 is constant. We have:

m1X
i2=0

:::

mnX
in=0

�i1::in = 1 8 i1 2 f1; ::;m1g (33)

and so:

m1X
i2=0

:::

mnX
in=0

�i1::ina
1
i1 = a

1
i1 8 i1 2 f1; ::;m1g (34)

We haveaj0 = 0, thus we can write:

m1X
i1=0

:::

mnX
in=0

�i1::ina
1
i1
=

m1X
i1=0

a
1
i1

(35)

taking into account each sensor, we have:

8>>>>>><
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m1X
i1=0

:::

mnX
in=0

�i1::ina
1
i1
=

m1X
i1=0

a
1
i1

:::
m1X
i1=0

:::

mnX
in=0

�i1::ina
n
in =

mnX
in=0

a
n
in

(36)

and:

m1X
i1=0

:::

mnX
in=0

 
nX

j=1

a
j
ij

!
�i1::in =

nX
l=1

mlX
il=0

a
l
il

(37)

which is a constant. This result shows that it is possible to add
constants terms to each costs without changing the minimization
process. By using this result and by dividing the costs by a nor-
malization factor, it is always possible to consider costs that verify
14.


