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ABSTRACT source localization based on the classification of time delay esti-
. . mates. Third, we present the performance of our approach based
T_hls_paperproposesasolutlon _to th(_a problem of robustsp_eakeron experiments in an anechoic chamber. Finally, a discussion of

localization under e}(_jver_se acoustic ctiogis. _The approach is ... the results is provided and some conclusions are drawn.

based on the classification of time delay estimates. Two classifi-

cation techniques are investigated in detail: maximum likelihood

(ML) classification and classification based on histogram compari- 2. TIME DELAY ESTIMATION

son. Their performance under adverse acousticitiond is com- '
ared to outcomes obtained with the traditional approach which . . . o

Eses time delay estimates directly to infer speaker positions. EX_Con5|der wo received sensor 5'9”9J$t). andy; (t) on_gmatmg

periments indicate that the ML classification method provides lit- ffO”? a common source as showr_l in F'g.'. 1. The distance from

tle improvement over the traditional method. On the other hand, _the "th _mlcrophone to the source |s_specmed aadd th_e source

using histogram classification, we can improve the probability of is positioned daway from the j-th microphone. The distance be-

correct speaker localization by more thé¥ compared to either nglgnaﬁ]h detag? ;?sn:(rﬂzl;zriﬁgﬂtﬁglﬁzfih :?:Vz'll%fig f'tehlg gﬁgg'
the traditional approach or the ML classification technique. gtn,

tion of arrival can be unambiguously computed from

1. INTRODUCTION cos(§) = Tijc 1)

Different solutions have been suggested to tackle the problem of

passive speakerlocalization. They normally rely on the acquisition In Eq. (1), ,; is the time delay between the microphones i and
of time-delayed replicas of a source signal at spatially distributed j, while ¢ denotes the speed of sound. For nondispersive wave
sensors. The generalized cross-correlation technique is commonly . di—dj

applied to obtain time differences of arrival (TDOAs) between Propagationwe get; = ——.
multiple sensor signals [1]. TDOA estimates are subsequently
used as parameters specifying the source position. Chan and Ho
proposed a technique based on intersections of hyperbolic curves
[2]. Brandstein et al. used the linear intersection (LI) estimation
method [3]. Both techniques yield closed-form solutions. In [4],
Wang and Chu presented the voice source localization system used
in the PictureTel automatic camera pointing system. They average
signal onsets and apply the phase correlation technique which has
been found to perform adequately for acoustic event localization
in real environments. However, for adverse noise and reverbera-
tion conditions, Omologa and Svaizer showed experimentally that
there are circumstances under which the phase correlation tech-  Mic. i d Mic. j
nigues no longer yields reliable results [5].

In this paper we present an approach to speaker localization ) ) ) i .
especially designed for difficult acoustic conditions such as se- Figure 1: Configuration used to explain the time difference of ar-
vere multipath distortion (reverberations), acoustic obstructions, "val (TDOA) between signals recorded at the i-th and j-th micro-
and background noise. Similar to conventional methods, TDOAs Phone.
are still taken asniputs for subsequent processing steps.itidas
estimates are, however, no longer based on geometrical considera- One of the most popular techniques for TDOA estimation is
tions under ideal coritions. Instead they follow by classification  the generalized cross-correlation technique. Although optimal for
of time delay estimates obtained underitipath propagation and  single path propagation of Gaussian signals contaminated by un-
in the presence of background noise. correlated white noise, its performance can deteriorate significantly

This paper is organized as follows: First, we briefly outline when echos are present. In this case, the signal at the i-th micro-
time delay estimation. Second, we describe two techniques forphone recorded when there are M echos and ambient noise can be
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written as
M
yi(kTe) = so(kTe —710:) + Z @ 80(kTs — Tii)
m=1

+ni(kT), i=1,...,Q. )
The waveformsq (k7% ) represents the desired speech signal.
Itis received and sampled by Q omnidirectional microphones with
suitably chosen sampling peridd. Further,«,, is the unknown
reflection coefficient of the m-th reverberation, angk’ ) is am-
bient noise at the i-th microphone. The time delaysandr,,; are

Finally, the estimated delay betweerjk] andy;[k] for the
x-th signal frame/;;[x], is the sample lag maximizing Eq. (4):

@)

li;[x] = arg mlax{R,'] [, 1]}

The associated time difference of arrival (in seconds) for the
x-th segmentis X
Fi[K] = by [k] - Ts. (8)
Substituting;;[<] into Eg. (1), we obtain an estimate of the
speaker position foeach frame. Unfortunately, such a direct ap-
proach is likely to fail under adverse acoustic citinds, since

associated with the propagation time from the talker and the m-th @ccurate TDOA estimates are necessary for Eq. (1) to hold. More
reverberation to the i-th microphone. Figure 1, e.g., shows that robust position estimates can, however, still be obtained if time

70: = dj/c. Following common notation, the discrete-time signals
y:(kT:) andy;(kT.) are further on denoted as[k] andy;[k],
respectively.

Due to the nonstationary behavior of speech, a short-time sig-

delay estimates are classified as explained next.

3. TIME DELAY CLASSIFICATION

nal analysis is needed. To that end, the total record length of theWhen multipath wave propagation is present, many replicas of

i-th and j-th sensor outputs is divided inf§ disjoint segments
(frames) of (even) length. They are indexed usingas the frame
numberx =1 ..., K . The frame number is related to the center
sample of thes-th time segment accordingto= (2x — 1) £.

y; [K]

(2K-1) %

|

T
L

2

Figure 2: For short-time TDOA estimation, the input signals are
divided into K time segments (frames). Each frame contdins
samples. .

Having introduced signal frames and their numbering, we can
formulate the TDOA estimation procedure as follows:

First, obtain estimates of the short-time power speGffa:, «)
and(; (x,w) by evaluating

Gi(k,w) = Zy,‘[ﬁ—l—m]w[m]e_wm. 3)

In Eq. (3),w[.] is a (rectangular) window sequence with (even)
length L, symmetric around the frame center.

each wave front reach the sensors. This makes time delay estima-
tion more difficult and in some cases impossible. However, when
wave propagation takes place within a known environment, condi-
tional probability density functions (pdfs) can be used to improve
source localization. They can either be obtained using the image
model [6], or they can be learned directly from measurements dur-
ing a training period.

Once we know the conditional pdfs of time delay estimates
given all representative speaker positions, we can improve source
localization by time delay classification. To this end, we consider
a maximum likelihood (ML) approach first. Afterwards, we dis-
cuss classification by histogram comparison. For simplicity, the
algorithms are explained for plane waves impinging on an array
consisting of two microphones as shown in Fig. 1. An exten-
sion of the basic ideas to more sophisticated arrays is conceptually
straightforward.

Each conditional probability density function describes a dis-
tribution of time delay estimates for a given source position in a
known acoustic environment. To estimate the conditional pdfs, we
first divide the whole horizon int@ angular sectors. Each sector
is represented by its center angl€). The superscript indexes
all P angularregions,ieg=1, ..., P.

The (integer) time delay between the i-th and the j-th micro-

phone associated with theth angular regionl,ff) , follows from

(p)
Ly )

C

:[M'H

Next, compute the short-time estimate of the generalized cross The symbol.] denotes rounding to the next nearest integer. For

correlation function between the i-th and j-th sensor signal from

s

~ 1
Ri] [K7 l] = %

-

Vi (K, w) éi](ﬁ, w) ¥ dw. 4)

In Eq. (4),v:;(x, w) is the frequency weighting filter for the-
th frame. The estimate of the cross-power spectrumdf] and
y;[k] is given by

Gij(r, w) = Gi(k, w) G (K, w). (5)
Similar to [4] and [5], we restrict ourselves to the phase correlation
method with

iy () = ——

_ . 6
|GU(H7 w)' ( )

simplicity, we set up adjacent angular regiods) and¢®+!),
such that associated time delaly§, andi{”*"), differed by a con-
stant number of samples, specified®asThat is,
|l§f) - l§f+1)| = A = constyp. (10)
Since the continuous coitibnal pdfsp(i,;| §'*) ) are not avail-
able, histogramg7(I;;| §'”)) are used instead. They contalh
bins with (identical) bin widthA. The bins are centered around
the time delayisl(;"), m =1, ..., P. The superscriptp, in ll(;")
refers to the m-th histogram bin representing the m-th angular re-
gion. There are as many histogram bins as there are angular re-
gions. To populate the bins, we piign a sourcaunder some in-
cident anglé'?). Then we use Eq. (7) to estimakétime delays,



li;[k], k =1, ..., K >> 1. Each time delay estimalg[«] is Let the measurement histogram be associated with the un-
added to the appropriate histogram bin by effectively quantizing known angle of arrivab'@. In a first step,N signal segments
it to the closest!””) and incrementing an associated counter. The (measurement frames) are recorded each consistifigsamples.
number of discrete TDOA estimates finally found in the m-th bin Next, we estimaté’ associatedtime delays(x], « =1, ..., N.
centered arounlcﬁ’") is calledn?’ . The subscripte in n'? recalls Their statistical distribution yields a measurement histogram re-
the associated (r]n-th) histogram bin. The supersgriptreminis- ferred to agi (1;;| 6'7).
cent of the incident anglé® the histogram has been estimated Once the measurement histografii; ;| (% ) has been com-
(trained) for. puted, we find the unknown source directié®’ by comparing

In the limit, the conditional histograrH (1;;| §'”)) for a given (L9 to the training histogram&l (;;| 6®)),p = 1, ..., P,
incident angleé”) can be viewed as an ensemble of estimated dis- introduced earlier. Simply choosing the best fit, we obtain a very
crete probabilities arranged over all histogram bins. An example robust estimate for the unknown angle of incidefé.
is shown in Fig. 3. The chi-squared metric is used as a distance measure between
the measurement histogra(l;,| 4 ) and the p-th training histo-
gramH (1;;] 8'7)) associated witld ). For thex® comparison of
K the measurement histogram to the p-th training histogram, we get

X2(9(q) | g(p)) - (12)

m=1

e L

In Eq. (12),N,(,?) denotesthe number of time delay estimates in the
s 1 2 3 4 5 6 7 8 =ww

m-th bin of the measurement histografil; ;| #(¢ ). The expected
Figure 3: Idealized histogram obtained for a source under incidentnu_m_ber O_f time deAI?g/) estimates in the m-th bin based on the p-th
angled® . The histogram shows that most of the estimated time training histograms,,”, follows from

delays,ll(]’"), fall into the appropriate histogram bin with = 4. . (5) n®)

This is the case when there are no significant echos. ' = =N (13)

Equation (13) merely takest? recorded oveds training frames

and adjusts it taV, the number of measurement framéé £ K).
Finally, they?-estimate of the incident angléxz, is the angle

The maximum likelihood (ML) classifier takes the time delay es- whose value for? (89| ()} is smallest, i.e.:

timate for thex-th frame,l;;[«], as classifier input and returns an N .

instant estimate of the assjc[)ciated angular redion,[«], which is Oy> = arg 1;}1,?{X2(9(q) 670 p=1, .., P (19)

most likely fori;,[«]. More mathematically,

3.1. Maximum Likelihood Classification

Since there are only different training histograms each charac-

2 ) terizing a particular angular region, we only detifferent values
Orrz[] :argm(a;({f[(lij[I-€]|49(1’))}7 p=1,...,P. (11) gap g g y g
elp

foré,z.
Recall that the angular regions are represented by their center an- 4. EXPERIMENTS AND RESULTS
glesd? p=1, ..., P. As aresultf, . [x] can only assumg
different values. The experiments took place in an anechoic chamber. The array

Using histograms, we implement ML classification by means consisted of two microphones spaced approximateiyn apart.
of a contingency table. That is, given a particular time delay, we To introduce echos, the walls to the left and right of the speaker
look up the most likely angular region. The tables are based on theyere modified by adding material reflecting any incident acoustic
histogramsH (1| 6'*)) obtained during the training period. waves {,, = 1). Approximately equally strong echos came from
The ML classification procedure improves source localization the chamber floor.
when the direct path from the source to the microphone array is Training histograms were based on 2500 speech frames. Mea-
obstructed. In the presence of strong echos, a much more successurement histograms comprised an ensemble of time delays de-
ful strategy is to postpone source localization until many frames rived from 225 measurement frames. Each frame fvas 800

have been evaluated. Such a technique is explained next. sampleslong. A male speech signal was used for training, and a fe-
male voice was used for measurements. For training, a speakerwas
3.2. Classification by Histogram Comparison placed at the center of the angular regions. When performing

) ) ) measurements, the speaker was positioned arbitrarily. We counted
For objects slowly moving compared to the sampling rate, many how many times the speaker positions were correctly assigned to
frames may be used to arrive at an estimate for a source positionthe underlying angular region. This number was used to approx-

We propose classification by histogram comparison as a practi-imate the probability of correctly estimated speaker orientations,
cal implementation of this idea. The major difference to the ML p,, according to

method is that this method no longer relies on the classification of

a single TDOA estimate. Instead, it takes an ensemble of many es- Pp =~ ” :
timates and arranges them as a histogram which is finally classified Total number of estimates

to obtain an estimate of the unknown angular region of arrival. Three source localization techniques were compared:

Number of correct estimates

(15)



1. No classification, i.e., Eq. (1) was used to estin#4f&. delays carried out using estimates of conditional probability den-
2. ML classification according to Eq. (11), and sity functions. Two methods were investigated in detail: ML clas-
sification and classification by histogram comparison.

Experimental results based on real data in adverse acoustic en-
Due to the design of the algorithms, a different number of frames vironments were performed. The results indicate that source local-
is necessary to arrive at the number of correct angular estimatesization by ML classification performs approximately as poorly as
When either time delay estimates are used directly to arrive at anthe traditional method using straightforward geometrical relation-
angular estimate or when the ML classification technique is ap- ships between time delay estimates and speaker positions. Speaker
plied, we get an instant estimate for each frame. For both cases|ocalization based on histogram comparison, however, yields much
we decided to us&00 frames to estimat&y. On the other hand,  better results. Given our experimental setup, it outperformed the
using the same number of source positions to evaluate histogranrML method by67% when echos were present. In another exper-
classification, we neeti00 x 225 = 22500 frames, since each  iment where we additionally considered an acoustic obstruction
angular estimate requires a measurement histogram accumulatednd ambient background noise, it delivered results beating the re-
over225 frames. maining two techniques by an even wider margin.

Results are displayed in Fig. 4. The chart on the left side The excellent results obtained by histogram classification carry
shows the percentage of correctly estimated incident angles wherthe price tag of longer observation periods. For example, creating
there are strong acoustic reverberations but no noise. We see thaa measurement histogram usiz@p frames, each containirigl 2
there is no difference between the traditional technique (associatedsamples acquired with a sampling ratefof= 48 kHz, takes ap-
with the first bar) and ML time delay classification whose result proximately two seconds. This time can, however, be halved, if
is shown in the second bar. Both obtain the saffae = 55%. segments are overlapped by a factor of two. Nevertheless, if (1)
Much better results are obtained by histogram classification. As a statistical description of the acoustic environment is accessible,
indicated by the third bar, it achievéy, = 92%. Estimating the and (2) system specifications permit the time to evaluate an ensem-
angle of incidence using histogram classification, thus, provides ble of time delay estimates, then speaker localization based on his-
an average improvement in localization accurac§@ over the togram comparison is among the most robust methods suggested

3. x*-classification as outlined in Eq. (14).

first two methods. so far.
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