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ABSTRACT

This paper proposes a solution to the problem of robust speaker
localization under adverse acoustic conditions. The approach is
based on the classification of time delay estimates. Two classifi-
cation techniques are investigated in detail: maximum likelihood
(ML) classification and classification based on histogram compari-
son. Their performance under adverse acoustic conditions is com-
pared to outcomes obtained with the traditional approach which
uses time delay estimates directly to infer speaker positions. Ex-
periments indicate that the ML classification method provides lit-
tle improvement over the traditional method. On the other hand,
using histogram classification, we can improve the probability of
correct speaker localization by more than60% compared to either
the traditional approach or the ML classification technique.

1. INTRODUCTION

Different solutions have been suggested to tackle the problem of
passive speaker localization. They normally rely on the acquisition
of time-delayed replicas of a source signal at spatially distributed
sensors. The generalized cross-correlation technique is commonly
applied to obtain time differences of arrival (TDOAs) between
multiple sensor signals [1]. TDOA estimates are subsequently
used as parameters specifying the source position. Chan and Ho
proposed a technique based on intersections of hyperbolic curves
[2]. Brandstein et al. used the linear intersection (LI) estimation
method [3]. Both techniques yield closed-form solutions. In [4],
Wang and Chu presented the voice source localization system used
in the PictureTel automatic camera pointing system. They average
signal onsets and apply the phase correlation technique which has
been found to perform adequately for acoustic event localization
in real environments. However, for adverse noise and reverbera-
tion conditions, Omologa and Svaizer showed experimentally that
there are circumstances under which the phase correlation tech-
niques no longer yields reliable results [5].

In this paper we present an approach to speaker localization
especially designed for difficult acoustic conditions such as se-
vere multipath distortion (reverberations), acoustic obstructions,
and background noise. Similar to conventional methods, TDOAs
are still taken as inputs for subsequent processing steps. Position
estimates are, however, no longer based on geometrical considera-
tions under ideal conditions. Instead they follow by classification
of time delay estimates obtained under multipath propagation and
in the presence of background noise.

This paper is organized as follows: First, we briefly outline
time delay estimation. Second, we describe two techniques for

source localization based on the classification of time delay esti-
mates. Third, we present the performance of our approach based
on experiments in an anechoic chamber. Finally, a discussion of
the results is provided and some conclusions are drawn.

2. TIME DELAY ESTIMATION

Consider two received sensor signalsyi(t) andyj(t) originating
from a common source as shown in Fig. 1. The distance from
the i-th microphone to the source is specified as di, and the source
is positioned dj away from the j-th microphone. The distance be-
tween the two sensors is denoted as d. Assuming far-field condi-
tions and that d is smaller than half of the wave length, the direc-
tion of arrival can be unambiguously computed from

cos(�) =
�ij � c

d
: (1)

In Eq. (1), �ij is the time delay between the microphones i and
j, while c denotes the speed of sound. For nondispersive wave

propagation we get�ij =
di�dj
c .
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Figure 1: Configuration used to explain the time difference of ar-
rival (TDOA) between signals recorded at the i-th and j-th micro-
phone.

One of the most popular techniques for TDOA estimation is
the generalized cross-correlation technique. Although optimal for
single path propagation of Gaussian signals contaminated by un-
correlated white noise, its performance can deteriorate significantly
when echos are present. In this case, the signal at the i-th micro-
phone recorded when there are M echos and ambient noise can be



written as

yi(kTs) = s0(kTs � �0i) +

MX
m=1

�m s0(kTs � �mi)

+ ni(kTs); i = 1; : : : ; Q: (2)

The waveforms0(kTs) represents the desired speech signal.
It is received and sampled by Q omnidirectional microphones with
suitably chosen sampling periodTs. Further,�m is the unknown
reflection coefficient of the m-th reverberation, andni(kTs) is am-
bient noise at the i-th microphone. The time delays�0i and�mi are
associated with the propagation time from the talker and the m-th
reverberation to the i-th microphone. Figure 1, e.g., shows that
�0i = di=c. Following common notation, the discrete-time signals
yi(kTs) andyj(kTs) are further on denoted asyi[k] andyj[k],
respectively.

Due to the nonstationary behavior of speech, a short-time sig-
nal analysis is needed. To that end, the total record length of the
i-th and j-th sensor outputs is divided intoK disjoint segments
(frames) of (even) lengthL. They are indexed using� as the frame
number,� = 1 : : : ;K . The frame number is related to the center
sample of the�-th time segment according tok = (2 �� 1) L2 .
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Figure 2: For short-time TDOA estimation, the input signals are
divided intoK time segments (frames). Each frame containsL
samples. .

Having introduced signal frames and their numbering, we can
formulate the TDOA estimation procedure as follows:

First, obtain estimates of the short-time power spectraĜi(�;!)

andĜj(�;!) by evaluating

Ĝi(�;!) =
X
m

yi[�+m]w[m]e�j!m: (3)

In Eq. (3),w[:] is a (rectangular) window sequence with (even)
lengthL, symmetric around the frame center.

Next, compute the short-time estimate of the generalized cross
correlation function between the i-th and j-th sensor signal from

R̂ij[�; l] =
1

2�

Z �

��

 ij(�; !) Ĝij(�; !) e
j!l d!: (4)

In Eq. (4), ij(�; !) is the frequency weighting filter for the�-
th frame. The estimate of the cross-power spectrum ofyi[k] and
yj[k] is given by

Ĝij(�; !) = Ĝi(�; !) Ĝ
�

j (�; !): (5)

Similar to [4] and [5], we restrict ourselves to the phase correlation
method with

 ij(�;!) =
1

jĜij(�; !)j
: (6)

Finally, the estimated delay betweenyi[k] andyj[k] for the
�-th signal frame,̂lij [�], is the sample lag maximizing Eq. (4):

l̂ij [�] = argmax
l
fR̂ij [�; l]g: (7)

The associated time difference of arrival (in seconds) for the
�-th segment is

�̂ij[�] = l̂ij [�] � Ts: (8)

Substituting�̂ij[�] into Eq. (1), we obtain an estimate of the
speaker position foreach frame. Unfortunately, such a direct ap-
proach is likely to fail under adverse acoustic conditions, since
accurate TDOA estimates are necessary for Eq. (1) to hold. More
robust position estimates can, however, still be obtained if time
delay estimates are classified as explained next.

3. TIME DELAY CLASSIFICATION

When multipath wave propagation is present, many replicas of
each wave front reach the sensors. This makes time delay estima-
tion more difficult and in some cases impossible. However, when
wave propagation takes place within a known environment, condi-
tional probability density functions (pdfs) can be used to improve
source localization. They can either be obtained using the image
model [6], or they can be learned directly from measurements dur-
ing a training period.

Once we know the conditional pdfs of time delay estimates
given all representative speaker positions, we can improve source
localization by time delay classification. To this end, we consider
a maximum likelihood (ML) approach first. Afterwards, we dis-
cuss classification by histogram comparison. For simplicity, the
algorithms are explained for plane waves impinging on an array
consisting of two microphones as shown in Fig. 1. An exten-
sion of the basic ideas to more sophisticated arrays is conceptually
straightforward.

Each conditional probability density function describes a dis-
tribution of time delay estimates for a given source position in a
known acoustic environment. To estimate the conditional pdfs, we
first divide the whole horizon intoP angular sectors. Each sector
is represented by its center angle�(p). The superscriptp indexes
all P angular regions, i.e.,p = 1; : : : ; P .

The (integer) time delay between the i-th and the j-th micro-
phone associated with thep-th angular region,l(p)ij , follows from

l
(p)
ij =

h
cos(�(p)) � d

c
�
1

Ts

i
: (9)

The symbol[:] denotes rounding to the next nearest integer. For
simplicity, we set up adjacent angular regions,�(p) and�(p+1),
such that associated time delays,l

(p)
ij andl(p+1)ij ; differed by a con-

stant number of samples, specified as�. That is,

jl
(p)
ij � l

(p+1)
ij j = � = const8p: (10)

Since the continuous conditional pdfsp(lij j �(p)) are not avail-
able, histogramsH(lij j �

(p)) are used instead. They containP
bins with (identical) bin width�. The bins are centered around
the time delaysl(m)

ij ; m = 1; : : : ; P . The superscript,m, in l(m)
ij

refers to the m-th histogram bin representing the m-th angular re-
gion. There are as many histogram bins as there are angular re-
gions. To populate the bins, we position a sourceunder some in-
cident angle�(p). Then we use Eq. (7) to estimateK time delays,



l̂ij [�]; � = 1; : : : ; K >> 1. Each time delay estimatêlij[�] is
added to the appropriate histogram bin by effectively quantizing
it to the closestl(m)

ij and incrementing an associated counter. The
number of discrete TDOA estimates finally found in the m-th bin
centered aroundl(m)

ij is calledn(p)m . The subscriptm in n(p)m recalls
the associated (m-th) histogram bin. The superscriptp is reminis-
cent of the incident angle�(p) the histogram has been estimated
(trained) for.

In the limit, the conditional histogramH(lij j �
(p)) for a given

incident angle�(p) can be viewed as an ensemble of estimated dis-
crete probabilities arranged over all histogram bins. An example
is shown in Fig. 3.
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Figure 3: Idealized histogram obtained for a source under incident
angle�(4). The histogram shows that most of the estimated time
delays,l(m)

ij , fall into the appropriate histogram bin withm = 4.
This is the case when there are no significant echos.

3.1. Maximum Likelihood Classification

The maximum likelihood (ML) classifier takes the time delay es-
timate for the�-th frame,l̂ij [�], as classifier input and returns an
instant estimate of the associated angular region,�̂ML[�], which is
most likely for l̂ij [�]. More mathematically,

�̂ML[�] = arg max
�(p)

fH(l̂ij [�]j�
(p))g; p = 1; : : : ; P: (11)

Recall that the angular regions are represented by their center an-
gles�(p); p = 1; : : : ; P . As a result,̂�ML[�] can only assumeP
different values.

Using histograms, we implement ML classification by means
of a contingency table. That is, given a particular time delay, we
look up the most likely angular region. The tables are based on the
histogramsH(lij j �(p)) obtained during the training period.

The ML classification procedure improves source localization
when the direct path from the source to the microphone array is
obstructed. In the presence of strong echos, a much more success-
ful strategy is to postpone source localization until many frames
have been evaluated. Such a technique is explained next.

3.2. Classification by Histogram Comparison

For objects slowly moving compared to the sampling rate, many
frames may be used to arrive at an estimate for a source position.
We propose classification by histogram comparison as a practi-
cal implementation of this idea. The major difference to the ML
method is that this method no longer relies on the classification of
a single TDOA estimate. Instead, it takes an ensemble of many es-
timates and arranges them as a histogram which is finally classified
to obtain an estimate of the unknown angular region of arrival.

Let the measurement histogram be associated with the un-
known angle of arrival�(q). In a first step,N signal segments
(measurement frames) are recorded each consisting ofL samples.
Next, we estimateN associatedtime delaysl̂ij [�]; � = 1; : : : ; N .
Their statistical distribution yields a measurement histogram re-
ferred to asĤ(lij j �

(q)).
Once the measurement histogram̂H(lijj �

(q)) has been com-
puted, we find the unknown source direction�(q) by comparing
Ĥ(lij j �

(q)) to the training histogramsH(lijj �
(p)), p = 1; : : : ; P ,

introduced earlier. Simply choosing the best fit, we obtain a very
robust estimate for the unknown angle of incidence�(q).

The chi-squared metric is used as a distance measure between
the measurement histogram̂H(lij j �

(q)) and the p-th training histo-
gramH(lijj �

(p)) associated with�(p). For the�2 comparison of
the measurement histogram to the p-th training histogram, we get

�2(�(q)j �(p)) =

PX
m=1

(N (q)
m � n̂

(p)
m )2

n̂
(p)
m

: (12)

In Eq. (12),N (q)
m denotes the number of time delay estimates in the

m-th bin of the measurement histogram̂H(lij j �
(q)). The expected

number of time delay estimates in the m-th bin based on the p-th
training histogram,̂n(p)m , follows from

n̂(p)m =
n
(p)
m

K
�N: (13)

Equation (13) merely takesn(p)m recorded overK training frames
and adjusts it toN , the number of measurement frames (N < K).

Finally, the�2-estimate of the incident angle,�̂�2 , is the angle
whose value for�2(�(q)j �(p)) is smallest, i.e.:

�̂�2 = arg min
�(p)

f�2(�(q)j �(p))g; p = 1; : : : ; P: (14)

Since there are onlyP different training histograms each charac-
terizing a particular angular region, we only getP different values
for �̂�2 .

4. EXPERIMENTS AND RESULTS

The experiments took place in an anechoic chamber. The array
consisted of two microphones spaced approximately1:3m apart.
To introduce echos, the walls to the left and right of the speaker
were modified by adding material reflecting any incident acoustic
waves (�m � 1). Approximately equally strong echos came from
the chamber floor.

Training histograms were based on 2500 speech frames. Mea-
surement histograms comprised an ensemble of time delays de-
rived from 225 measurement frames. Each frame wasL = 800
samples long. A male speech signal was used for training, and a fe-
male voice was used for measurements. For training, a speakerwas
placed at the center of theP angular regions. When performing
measurements, the speaker was positioned arbitrarily. We counted
how many times the speaker positions were correctly assigned to
the underlying angular region. This number was used to approx-
imate the probability of correctly estimated speaker orientations,
PD, according to

PD �
Number of correct estimates
Total number of estimates

: (15)

Three source localization techniques were compared:



1. No classification, i.e., Eq. (1) was used to estimate�(p).

2. ML classification according to Eq. (11), and

3. �2-classification as outlined in Eq. (14).

Due to the design of the algorithms, a different number of frames
is necessary to arrive at the number of correct angular estimates.
When either time delay estimates are used directly to arrive at an
angular estimate or when the ML classification technique is ap-
plied, we get an instant estimate for each frame. For both cases,
we decided to use100 frames to estimatePD. On the other hand,
using the same number of source positions to evaluate histogram
classification, we need100 � 225 = 22500 frames, since each
angular estimate requires a measurement histogram accumulated
over225 frames.

Results are displayed in Fig. 4. The chart on the left side
shows the percentage of correctly estimated incident angles when
there are strong acoustic reverberations but no noise. We see that
there is no difference between the traditional technique (associated
with the first bar) and ML time delay classification whose result
is shown in the second bar. Both obtain the samePD = 55%.
Much better results are obtained by histogram classification. As
indicated by the third bar, it achievesPD = 92%. Estimating the
angle of incidence using histogram classification, thus, provides
an average improvement in localization accuracy of67% over the
first two methods.
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Figure 4: Probability,PD, of correct source localization when only
echos are present (left) and with echos, background noise, and an
acoustic obstruction (right). The indices along the horizontal axis
refer to the traditional method (1), the ML classification (2), and
the classification by histogram comparison (3).

The chart on the right side of Fig. 4 displays results when the
direct path from the source to the array is no longer accessible and
when there is a background noise source with a signal-to-noise-
ratio of 6 dB. As before, strong echos are generated by reverber-
ations from the left and right wall and the floor. This time, the
second bar shows that the ML classification method achieves only
PD = 23%. The traditional speaker localization method obtains
an even lowerPD = 15% as indicated by the first bar. Neverthe-
less, using ML classification, it still remains somewhat possible
to distinguish between source directions even when the traditional
technique fails. The third bar reveals that histogram classification
still yields a superiorPD = 70%.

5. DISCUSSION AND CONCLUSIONS

We presented an approach to robust speaker localization under ad-
verse acoustic conditions. It is based on the classification of time

delays carried out using estimates of conditional probability den-
sity functions. Two methods were investigated in detail: ML clas-
sification and classification by histogram comparison.

Experimental results based on real data in adverse acoustic en-
vironments were performed. The results indicate that source local-
ization by ML classification performs approximately as poorly as
the traditional method using straightforward geometrical relation-
ships between time delay estimates and speaker positions. Speaker
localization based on histogram comparison, however, yields much
better results. Given our experimental setup, it outperformed the
ML method by67% when echos were present. In another exper-
iment where we additionally considered an acoustic obstruction
and ambient background noise, it delivered results beating the re-
maining two techniques by an even wider margin.

The excellent results obtained by histogram classification carry
the price tag of longer observation periods. For example, creating
a measurement histogram using200 frames, each containing512
samples acquired with a sampling rate offs = 48 kHz, takes ap-
proximately two seconds. This time can, however, be halved, if
segments are overlapped by a factor of two. Nevertheless, if (1)
a statistical description of the acoustic environment is accessible,
and (2) system specifications permit the time to evaluate an ensem-
ble of time delay estimates, then speaker localization based on his-
togram comparison is among the most robust methods suggested
so far.
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