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ABSTRACT

Multi-resolution features, which are based on the premise that
there may be more cues for phonetic discrimination in a given
sub-band than in another, have been shown to outperform the
standard MFCC feature set for both classification and
recognition tasks on the TIMIT database [5]. This paper
presents an investigation into possible strategies to extend
these ideas from the spectral domain into both the spectral and
temporal domains. Experimental work on the integration of
segmental models, which are better at capturing the longer
term phonetic correlation of a phonetic unit, into the
discriminative multi-resolution framework is presented.
Results are presented which show that including this
supplementary temporal information offers an improvement
performance for the phoneme classification task over the
standard multi-resolution MFCC feature set with time
derivatives appended. Possible strategies for the extension of
theses techniques into the area of continuous speech
recognition are discussed.

1. INTRODUCTION

The multi-resolution framework which seeks to exploit
discriminative cues in the spectral domain by supplementing
cepstral features derived from the full frequency band-width
with those obtained from smaller sub-bands, has been shown to
outperform the standard MFCC feature set for both
classification and recognition tasks on the TIMIT database [5].
The multi-resolution framework is based on the following
premises:

• The Human Auditory System (HAS) relies on features
derived from numerous overlapping sub-band filters [1],

• It appears that HAS uses an across-time muti-level
processing scheme, i.e the combination of localised
detailed information from a relatively small window in
time with longer term temporal information

• Through a discriminative optimisation process we can
model the potential for phonetic discrimination across
these dependent feature processing channels

This idea that the inclusion of supplementary information
provides potential for phonetic discrimination though some
discriminative optimisation process, can be extended from the
spectral domain into the temporal domain in an attempt to

model this across-time processing scheme. While the
conventional three state HMM offers a powerful statistical
model, the assumption that within each state the observation
vectors are independent  and identically distributed (IID), is
clearly violated by the high degree of correlation between
successive vectors. The use of dynamic coefficients is a well
established approach to extending conventional feature vectors
to include temporal information and lessen the effect of the IID
assumption. This paper presents some preliminary
investigation which seeks to apply the multi-resolution model
to the temporal domain by supplementing first and second
order regression coefficients taken over a small number of
frames, with coefficients taken over an increasingly large
number of frames, thereby extending the degree of frame
dependence to account for the high degree of correlation
between successive vectors.

An alternative approach to overcome the weaknesses of the IID
assumption is the use of segmental HMMs, which have the
reverse properties of a standard HMM in that they are better at
modelling the longer term phonetic correlation but miss out on
localised sub-phonetic cues. This paper explores the
discriminative combination of both multi-resolution and
segmental models in an attempt to combine the capabilities of
these different feature sets.

2. MULTI-RESOLUTION SPECTRAL
TEMPORAL FEATURES
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A  is conventionally the DCT, but it can be a general
discriminative feature transform [7]. Multi-resolution feature
vectors are a set of feature transformations such as
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yield the features over four sub-band quadrants and so on [5]



2.1 Sub-Phonetic and Segmental Models

In a conventional three state HMM, the states model sub-
phonetic segments of speech corresponding to the beginning,
the middle and the end of each phonetic unit. In contrast
segmental models capture the spectral-temporal features of a
phone over its duration.  A three state HMM is parameterised
by a multiple-mixture Gaussian density and a Markovian state
transition probability. The segmental model is rather similar to
a one state HMM, with the difference that segmental modelling
involves an estimate of the beginning and end of each phone
that is necessary for time normalisation.

The current work uses closely related segmental phonetic
features for phoneme classification. For a given unit of speech,
identified as a phoneme unit or phonetic segment, and of length
T vectors, the phonetic features for that segment can be derived
as

Y A XT=                                       (3)
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transformation dependent on the segment length T.  Here, A
T

is the T length DCT and the phonetic features Y are hence
derived via a DCT on the stacked cepstral vectors X  as
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where ( )c n
k

 is the nth coefficient of the kth cepstral vector in

the segment of staked MFCC vectors.  The 1

T  factor accounts
for  the variable length of the segment.  These phonetic features
thus yield a fixed length representation of a phoneme
irrespective of the original frame length of the segment.
Alongside the use of these features, a novel phoneme model is
used which uses a hybrid representation of a phoneme.
Previous work on these features and models have shown that
the features can match the performance of standard cepstrum
with first and second order derivatives for a classification task
on the TIMIT database.

2.2 Multi-Resolution Regression Coefficients

The performance of a speech recognition system can be greatly
enhanced by adding time derivatives to the basic feature vector,
and is now a well established approach in an attempt to include
temporal information within conventional feature vectors. First
order regression (delta) coefficients are calculated using the
following formula
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where d
t
 is a delta coefficient at time t computed in terms of

the corresponding static coefficients c
t +θ  to c

t −θ . The value of

Θ  dictates the window size, or the number of preceding and
succeeding vectors used to calculate the coefficients. The same
formula is applied to the delta coefficients to obtain second
order regression (acceleration) coefficients. By supplementing
coefficients calculated with a small window size with
coefficients based on a longer window size we can effectively
apply the idea of including several levels of supplementary
temporal information in the same manner as was applied to the
multi-resolution framework in the frequency domain, based on
the premise that there may be more potential for phonetic
discrimination in one set of regression coefficients than another.

3. DISCRIMINATIVE COMBINATION

Discriminative weighting of individual multi-resolution models
has been shown to outperform conventional MFCC features for
the phoneme classification task on the TIMIT database [5],
while segmental features have demonstrated the ability to
match the performance of standard HMM with first and second
order derivatives [6]. The inclusion of segmental features and
models into the discriminative multi-resolution framework is
therefore a natural progression in the effort to extend the multi-
resolution model from the just the spectral domain to both the
spectral and temporal domains.

A given segment X  of length T vectors will have a number of
multi-resolution subband cepstral feature vectors

( ) { }X r R b Brb
r= =1 1� �,  where r  identifies the resolution

level and b  the sub-band index within that resolution (for
r = 1 indicating the full band Br = 1). It will also have a fixed

length segmental representation Y  of the phoneme derived via
the process outlined in 2.1.

Let M j
rb( )  denote independent phoneme models for each band b

and resolution r, and Sj  an independent hybrid segmental

model for each phoneme j .  Then the combined log likelihood
for class j  can be given as
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The weights ( )ω j
rb should ideally reflect the discriminative

potential or confidence of each multi-resolution sub-band for a

particular class, and the weights ω j
S( )  the degree of confidence

of the hybrid segmental model

In keeping with this principle, discriminative training of the

weights ω j
rb( ) and ω j

S( )  is proposed, using a minimum

classification error (MCE) criterion.

The following notation is used where

B p Mj
rb rb rb

j

rb( ) ( ) ( ) ( )
( ) log ( )X X= (7a)
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(7a) describes the partial recognition score for a multi-

resolution sub-band vector sequence ( )X rb given a sub-band
model, and (7b) the score for a segmental model. Using this the
log-likelihood score of the segment belonging to class j  can be
defined as
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Let a misclassification measuredk ( )X  for a training segment

belonging to class k  be given by
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where η represents the model with the nearest score ie. the
most confusable class. A loss function can be defined [7] as a
sigmoidal function of dk ( )X
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The loss function is minimised for each training vector by
adaptively adjusting the sub-band and segmental  model
weights, according to
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∂
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where ω i  is the parameter value after the ith iteration,

∂ ωΓ( )X i is the gradient of the loss function and ε  is a small

positive learning constant. The weight update equations can be
derived for X  belonging to class k  and η  being the most
confusable class.  The equations are presented below in
equations 12a to 12d. 

ω ω εk
rb i

k
rb i

k k k
rb rbB( ), ( ), ( ) ( )( ( )[ ( ) ]) ( )+ = + −1 1Γ ΓX X X   (12a)

ω ω εη η η
( ), ( ), ( ) ( )( ( )[ ( ) ]) ( )rb i rb i

k k
rb rbB+ = + −1 1Γ ΓX X X   (12b)

ω ω εk
S i

k
S i

k k k TS X Y X( ), ( ),
,( ( )[ ( ) ]) ( , , )+ = + −1

11Γ ΓX X (12c)

ω ω εη η η
( ), ( ), ( ( )[ ( ) ]) ( , , )S i S i

k k TS X Y X+ = + −1
11Γ ΓX X  (12d)

4. EXTENSIONS TO CONTINUOUS
SPEECH RECOGNITION

The method of discriminative combination of partial scores
described in the previous section is readily applied to
classification tasks.  An extension to recognition involves more
challenges.  Results have been reported on extending multi-
resolution features to recognition using state dependant weights
for each model whereby each frame assigned to a particular

model in Viterbi based recognition has a weight applied to the
likelihood score for that frame [5].  To extend recognition to
incorporate segmental features is inherently problematic.  The
transformation of variable length segments to a fixed length
representation can potentially lead to excessive computation.
This is because segment boundaries must be hypothesised if not
established through some pre-processing stage.  Thus the
Viterbi Algorithm where the recognition lattice can be elegantly
extended on a frame by frame basis is not applicable.
Approaches to recognition using the phonetic model and
features are explored more thoroughly in [6].  This work seeks
to explore methods to introduce segmental models into a
framework using segmental and multi-resolution features.

The recombination of different recognisers is complicated by
difference in the alignment of transcriptions and it is not a case
of simply deciding which class is correct for a particular
segment.  ROVER (Recogniser Output Voting Error Reduction)
is a system developed at NIST to produce a composite system
where outputs from many recognition systems are available.
There are two stages to the system.  The transcriptions from two
or more systems are combined in a word transition network
using a modified version of the dynamic programming
alignment protocol traditionally used by NIST to evaluate ASR
systems.  Each branching point in the network is then evaluated
with a voting scheme and the best scoring word chosen and
output in the new transcription.

It would be possible to employ ROVER in this way to combine
decisions from recognition based on phonetic models and
features with standard HMM models.  However, this would not
be the optimal way of combining segmental models with
standard HMMs.  The transcriptions from the segmental models
have a much lower accuracy and overall would not be suitable
for a voting scheme which relies on a certain amount of
similitude across transcriptions.  This would not properly
exploit the complimentary strengths and weaknesses of
segmental modelling, multi-resolution features and HMM
models. It would be more advantageous to devise a rescoring
scheme that given a reduced set of possible segmentations
through a lattice output from HMM models used the phonetic
features and models and multi-resolution features to reassess
the output of the HMM and truly combine the abilities of the
different modelling paradigms.

Previous experimentation has shown that the highest level of
accuracy achieved has been with the combination of multi-
resolution features from a number of bands.  These features and
models could be used to output a lattice for each sentence to
enable the revaluation of the n-best hypotheses for a sentence.
The lattice consists of a series of links and nodes which
correspond to definite phonemes of associated log likelihood.
The score for each link can be adjusted by extracting the
segmental features for each link and calculating the likelihood
for the appropriate model.  Discriminative weights could be
used to determine how the likelihood scores should be
combined.  The paths are then reassessed to obtain the best
path.



5. EXPERIMENTAL RESULTS

5.1 Discriminative Combination

Experiments were performed to assess the potential of
discriminatively combining the multi-resolution and segmental
feature sets using 39 context-independent 20 mixture HMM
models for each multi-resolution sub-band and 36 mixtures for
the phonetic models. The full TIMIT training and test sets were
used throughout, with the exception that classified phonemes
of less than five frames were excluded from the experiments.
Previous experimentation [7] showed that while supplementing
the full band cepstra with either 2 or 4 sub-bands gave
improved results, use of both resolution levels was seen to
yield no further advantage. For the purpose of these
experiments therefore, three multi-resolution bands are used - a
full band supplemented with two sub-bands.

 Bandwidth (kHz)  Cepstral
Analysis

 Classification (%)

 0-7.9  (13)  68.88
 0-2  (7)  59.31

 2-7.9  (7)  45.87
 Segmental  (39)  65.46

 0-7.9, 0.2, 2-7.9  (13)+(7,7)  69.77
 0-7.9, 0.2, 2-7.9, Seg  (13)+(7,7)+(39)  71.20
 0-7.9, 0.2, 2-7.9, Seg*  (13)+(7,7)+(39)  72.16

Table (1)  ‘Multi-Resolution/Segmental Combination’

Table (1) shows the individual results for each of the sub-band,
segmental, multi-resolution features and then the performance
when the feature sets are linearly combined. Earlier work has
shown that multi-resolution recombination is shown to yield an
increase when each band is given equal weightings, but the
inclusion of segmental models into the framework improves the
classification result further. Discriminatively training
recombination weights according to the process outlined in 3.
for both multi-resolution and segmental models extends this
improvement (indicated in the above table by an asterix beside
the sub-band boundary). This shows that the assumption that
segmental models can be integrated into the multi-solution
framework, and can contribute discriminative information
which is not present within the MFCC feature set to hold true.

6.0 CONCLUSIONS

Multi-resolution features strive to utilise and combine the
discriminative features of speech in both time and frequency at
both localised sub-phonetic levels and across longer length
segmental phonetic levels.  The premise that cues for phonetic
discrimination may exist in one part of the spectral domain but
not another may be applied to the temporal domain, leading to
the conjecture that multi-resolution temporal features and
models may be able to exploit discriminative cues in localised
regions of the temporal domain. Linearly weighted inclusion of

segmental models into the multi-resolution framework offers an
improvement in performance for the phoneme classification
task on the TIMIT database, highlighting the potential for the
inclusion of supplementary temporal information. Future work
will explore the issue of discriminative multi-resolution
segmental transforms which seek to exploit discriminative cues
in both the time and frequency domains, as well as
experimentation with various levels of regression coefficients in
an attempt to model pertinent temporal information.
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