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ABSTRACT

In this paper, a non-complex estimator is developed
for the tilt angle of the rotation axis of an object that
is illuminated by a point light source. The tilt angle
de�nes the orientation of the 2D projection of the 3D
object rotation axis in the image plane and is a strong
clue for image understanding. The estimator evaluates
two images of a video image sequence showing a mov-
ing object. Additionally, only a displacement vector
�eld and the 2D object silhouette are required. No
3D information is required. Therefore, the object is
assumed to be rigid, to be matte, to have equally dis-
tributed surface normals and to be illuminated by a
distant point light source and ambient light. For esti-
mation, the displaced frame ratio (DFR), i.e. the frame
ratio after motion compensation, is evaluated statisti-
cally. The DFR depends only on the photometric e�ect
of temporally changing object shading. Experimental
results with real images show the proper performance
of the derived estimator for real objects. A demo is in
http://www.irisa.fr/prive/Jurgen.Stauder

1. INTRODUCTION

The estimation of rigid object motion relatively to a
capturing video camera is a classical problem. The
rigid motion is therefore described by 3D rotation and
3D translation, i.e. by six degrees of freedom.

The 3D object motion and 3D object shape can
be estimated from the 2D positions of corresponding
image points in succeeding images of a video image se-
quence in case of known and unknown intrinsic camera
parameters, see [5] and [18] for reviews, respectively.
In these approaches, pure geometric information is ex-
ploited. The object motion estimation problem can
be simpli�ed, if the 3D object shape is described by a
parametric shape model [6] or if the 3D object shape
is even known in advance [7][12]. In these approaches,

additionally to pure geometric information, the image
signal itself is exploited directly by applying a gradient
method [12].

In the approaches mentioned until now, photomet-
ric e�ects in the video images like shading, cast shadows
and specular reections have been either avoided (by
using robust point correspondences) or neglected (dur-
ing exploitation of the image signal). It is assumed that
a moving object preserves its brightness during motion,
see [11] for a discussion.

In presence of a strong, point-like light source, such
photometric e�ects are strong and contain information
on motion and shape of the objects, shown e.g. in [14].

To utilize photometric e�ects, the 3D object shape
may be estimated from shading [9][20], from specular
reections [19] or from cast shadows [15][8][4]. In these
approaches, the objects are either static [9][20][8][4]
or the motion is known in advance from a turntable
[19]. Further, the objects are often assumed to be
unicolored, i.e. having a spatially uniform reectance
[9][20][8].

To utilize photometric e�ects for 3D object motion
estimation, the usage of temporally changing object
shading has been proposed. For example, the shading
of a persons face changes, if the person turns his face
away from the point light source. Pentland [14] pre-
sented in 1991 an approach for shape estimation from
nothing than temporally changing shading. For 3D mo-
tion estimation, in [16][3] temporally changing shading
has been taken into account during evaluation of the
image signal by a gradient method. Thus, photometric
and geometric e�ects are used. In these approaches,
the 3D object shape is assumed to be known in ad-
vance. Because a gradient method tracks the motion
of a local image region independently from other image
regions, the objects are allowed to be multi-colored, i.e.
they may have a spatially varying reectance.

In this paper, the 3D motion of an object is esti-
mated from the photometric e�ect of temporally chang-



ing object shading, only. More speci�cally, one of the
six degrees of freedom of object motion is estimated.
The estimated entity is the tilt angle of the object ro-
tation axis that de�nes the orientation of the projection
of the object rotation axis in the image plane. The pro-
jected object rotation axis is a powerful key to image
understanding.

The approach and its relation to the literature are
as follows. Whereas in [5][18][16][3] mainly geometric
e�ects are evaluated for motion estimation, in this ap-
proach nothing than the photometric e�ect of tempo-
rally changing object shading is evaluated. Whereas in
[5][18] 3D motion and 3D shape are estimated jointly,
in this paper only motion is estimated by a less com-
plex method. In opposite to [7][12][16][3], the 3D ob-
ject shape is not assumed to be known in advance.
Instead, the assumption of equally distributed surface
normals is applied, known from illumination estimation
approaches [13][9][20]. To overcome the spatially vary-
ing, but unknown object reectance, two images will be
evaluated. Inspired by Pentland [14], the images will
be motion compensated (using a given displacement
vector �eld) and combined by a non-linear processing
to eliminate the unknown reectance. In this paper, as
non-linear processing the displaced frame ratio (DFR)
is introduced. It will be shown theoretically, that there
is a strong link between the mean spatial gradient of
the DFR inside the 2D object silhouette and the object
rotation axis tilt.

The paper is organized as follows. In Section 2,
the displaced frame ratio (DFR) will be introduced.
In Section 3, a method for rotation axis tilt estimation
from DFR observations will be developed. In Section 4,
experimental results for real images will be presented.

2. DISPLACED FRAME RATIO

In this section, the displaced frame ratio (DFR) will
be introduced as observation entity of the estimator.
To measure the DFR, a previous image at time instant
k � 1 with the luminance

sk�1(p) = �(P) E(N) (1)

and a current image at time instant k with the lumi-
nance sk(p) are needed. In Eq. 1, pT = (x; y) is a
2D image position, N the normal of the object surface
patch at the 3D position P that is visible at p, �(P) the
reectance of the surface patch and E(N) the irradi-
ance, i.e. the perceived light power per object surface.
The irradiance term E(N) describes the shading on the
object surface depending on the normal N [17].

To divide out the unknown but spatially varying ob-
ject reectance from the image luminances, the current

image is motion compensated by a given displacement
vector �eld dk(p) and related to the previous image
resulting to the DFR

dfr(p) =
sk(p� dk(p))

sk�1(p)
=

E(RN)

E(N)
; (2)

with R the rotation matrix describing the rotational
part of the object motion from time instant k � 1 to
k. The rotation matrix can be described by a unit ro-
tation axis vector R and a rotation angle � [10]. The
vector R, further denoted as rotation axis, can be de-
�ned by a tilt angle �R and a slant angle �R as shown
in Fig. 1. The DFR describes the photometric e�ect
of temporally changing object shading.
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Figure 1: De�nition of the rotation axis vector R in
the word coordinate system (x; y; z): The tilt angle �R
de�nes the orientation of the projection of R into the
xy-plane (i.e. image plane), whereas the slant �R is the
angle between the z-axis (i.e. viewing direction) andR.

For a scene illumination by a distant point light
source and ambient di�use light, the irradiance

E(N) = c (1 + � LN) (3)

at an object surface patch is de�ned - up to a camera
dependent constant c - by the surface normal N and
the weighted illumination direction L. The direction of
L is de�ned by the angles �L and �L as shown for R in
Fig. 1. jLj = e is the ratio between point light source
and ambient light intensities [17]. In Eq. 3, the factor
� equals one, if the point light source illuminates the
object surface. Else, at surface regions of self shadow,
� equals zero.

3. OBJECT ROTATION AXIS TILT

ESTIMATION

In this section, an estimator of the rotation axis tilt
angle will be derived analytically. Therefore, the de-



gy
gx

=

2e cos�L sin �L cos �L cos �R + 2e sin �R cos �R cos2 �L + 2e sin2 �L sin
2 �L sin �R cos �R

+3 cos�L sin �R cos �R + 3 sin �L cos �L cos �R � 2e sin2 �L sin �L cos �L sin �R sin �R
�2e cos2 �L sin �R sin �R � 2 sin �Le cos �L sin �L cos �R + 2e sin2 �L cos �L sin �L sin �R cos �R

�2e sin2 �L cos
2 �L sin �R sin �R � 3 cos�L sin �R sin �R � 3 sin �L sin �L cos �R

(4)

scription of the DFR according to Eq. 2 is simpli�ed
using the assumption that the

� object rotation is small,

such that Eq. 2 can be linearized with respect to the
rotation angle �. Using the further assumption that
the

� object surface can be locally approximated by a

spheric patch,

the spatial gradient rdfr(p) = (gx(p); gy(p))
T
of the

DFR can be derived similarly as shown in [9] for the
image luminance. rT = (@=@x ; @=@y) is the gradient
operator.

Following an idea of Pentland [13], who calculated
the spatial means of luminance gradients to recover the
point light source direction tilt, the DFR gradients are
averaged all over the 2D object silhouette that has to
be known in advance. Using Pentland's assumption
that the

� object surface normals are equally distributed

(see [9] for formulation), assuming further that the

� point light source is weak,

such that 1+LN � 1 holds, and assuming �nally that

� self shadowing is negligible,

such that � = 1 in Eq. 3 (assumption used implic-
itly also in [13][9]), the DFR gradient can be analyti-
cally integrated over the 2D object silhouette. If the y
component gy of the mean gradient is divided by its x
component gx, the analytic calculation gives the ratio
shown at in Eq. 4 at top of this page. Assuming that

� illumination is in viewing direction,

i.e. �L = 0, the ratio in Eq. 4 simpli�es to gy=gx =
� cos �R= sin �R, such that the �nal rotation axis tilt
estimator is

�̂R =
�

2
+

8>><
>>:

atan(ĝy=ĝx)

atan(ĝy=ĝx) + �
�=2
3�=2

if

ĝx > 0

ĝx < 0

ĝx = 0 or ĝy > 0

ĝx = 0 or ĝy < 0
(5)

with

�
ĝX
ĝY

�
=

X
object mask

w(p) r dfr(p) (6)

the estimate of the mean DFR gradient. The weight
w(p) = 1=

p
jrdfr(p)j reduces inuence of motion com-

pensation errors and neglected self shadow contours.

4. RESULTS

In Fig. 2, sample results with a real image sequence
are shown. They are obtained by a) automatic object
segmentation using the COST 211quat image analysis
model [2], b) by automatic estimation of a displacement
vector �eld using hierarchical block matching with half
pel resolution [1] and c) application of the developed
rotation axis tilt estimator.

The results show a good performance for even, if
the object shading is weak and the illumination is ab-
solutely not in viewing direction as assumed in Section
3. As long as the 2D object silhouettes were roughly
found (80% of the images), the accuracy for the shown
experiments is about �10 degrees by visual inspection.
An analytic error analysis and a larger variety of ex-
periments will follow in future work.
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Figure 2: Two sequences of three succeeding images of
the test sequence \Tai", format CIF, frame rate 12.5Hz:
(a) images 24,25,26 and (b) images 41,42,43. For each
sequence, the second and third images have been eval-
uated for estimation. For each sequence, the estimated
2D projection of the 3D rotation axis is superimposed
on the third image. It can be seen that the rotation
axis follows the rotation of the head.
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