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ABSTRACT

The paper deals with the problem of extracting topic information
from news show stories by statistical methods. It is shown that the
traditional topic-dependent n-gram language modeling approach
can be decomposed in order to apply neural networks for topic in-
dexing. Two specific problems in training of these networks are
addressed: a very sparse data distribution in the stories and the
superposition of different topics in a story. The first problem is
tackled by an integrated smoothing approach in the backpropaga-
tion method; an expansion of the neural network structure can be
used to cope with topic mixtures in stories. Due to the efficient
parameter sharing the application of neural networks results in a
small improvement in topic indexing performance on a small cor-
pus of broadcast news compared to the traditional topic-dependent
n-gram method.

1. INTRODUCTION

The automatic extraction of topic information from stories as they
appear e.g. in broadcast news shows is useful for information re-
trieval, categorization and adaptation of speech recognition sys-
tems. The common approaches for topic indexing make either use
of selecting keywords for each possible topic or they construct sta-
tistical models that describe the generation of stories probabilisti-
cally [5]. In this paper, the probabilistic approach is extended by
the incorporation of neural networks for the approximation of topic
probabilities. The neural networks are trained discriminatively and
and the number of trainable weight parameters can be adjusted to
the amount of training data.

When the task is to extract one single topic (out of a set of J
different topics) from a given story the selection of the most prob-
able topic yields the minimum expectation of false assignment. In
a Bayesian approach the conditional topic probability is decom-
posed as usual:

P (Topicj jStory) = P (Topicj) �
P (StoryjTopicj)

P (Story)
(1)

Suppose a corpus of stories with topic labels is given; then a max-
imum likelihood model for the prior P (Topicj) that a story that
is related to the j-th topic occurs can be derived from the rela-
tive frequency counts of this topic. The structure of the model for
the conditional likelihood P (StoryjTopicj) depends on the type
of elements that are used to represent the story. When the story
is given as a waveform of a spoken utterance a suitable represen-
tation can be formed by a sequence of acoustic feature vectors,
vector quantized discrete labels of these features, or by the se-
quence of (sub-)phonetic classes like the phonemes or the states
of an acoustic HMM [8]. Since the topic of a story is in general
coded in the meaning of the words of the story the application of
speech recognition technology is a reasonable intermediate step to
generate word transcriptions [6]. If the story is given as text (either
obtained by a recognition system or given as a printed article) the
string of words or of the sentences form suitable elements.

In the following, we assume that a story is given as a string
W T
1 =(w1; : : : ; wT ) of T items; although the items wt are re-

ferred to as words they can be actually any of the elements men-
tioned above. Then the conditional story likelihood can be written
as:

P (StoryjTopicj) = P (W T
1 jj) (2)

1.1. Topic-dependent n-gram language models
A common way to describe the story probability in Eqn. (2) is
the application of topic-dependent n-gram language modeling, that
assumes that a topic-dependent word probability only depends on
the sequence W t�1

t�n+1 of the previous n � 1 words. In this case,
Eqn. (2) is approximated by the product of n-gram probabilities:

P (W T
1 jj) =

TY
t=1

P (wtjW
t�1
t�n+1; j) (3)

In general, the estimation of a large number of reliable n-gram
probabilities suffers from the problem of sparse data and never oc-
curring events in the training corpus; this situation is even more
dramatic when n-grams have to be constructed for each of the J
different topics. Smoothing methods like model interpolation are
a suitable means to avoid zero probabilities: in [8] n-gram topic
models are interpolated with topic models of smaller history de-
pendency; in [5] topic-dependent language models are interpolated
with topic-independent models.

2. NEURAL NETWORKS FOR TOPIC
CLASSIFICATION

The topic-dependent n-gram probabilities that are multiplied in
Eqn. (3) can be decomposed by making use of Bayes rule into:

P (wtjW
t�1
t�n+1; j) =

P (jjW t
t�n+1)

P (jjW t�1
t�n+1)

� P (wtjW
t�1
t�n+1) (4)

The rightmost expression in Eqn. (4) is the traditional n-gram prob-
ability that is not related to any topic. The nominator represents the
probability that the j-th topic occurs given the history of the past n
words (including the current word wt); the denominator depends
on the same history without the current word (i.e. n� 1 words).

According to Eqn. (1) the index of the most probable topic can
be determined in this case by:

argmax
j

(
P (Topicj) �

TY
t=1

P (jjW t
t�n+1)

P (jjW t�1
t�n+1)

)
(5)

Neural networks (NN) are well known tools that can be used
to generate class probabilities for a given feature vector x [9]. If
the NN outputs are denoted by Oj(x) (1 � j � J , for J differ-
ent pattern classes) and a suitable training criterion (mean squared
error, cross entropy) is optimized it can be shown that the outputs
approximate the class posterior probabilities Oj(x) = P (jjx) [1].



For topic indexing tasks two different NNs can be applied to
approximate the probabilities P (jjW t

t�n+1) and P (jjW t�1
t�n+1).

The first NN uses a suitable representation of the n-word se-
quence W t

t�n+1 as network input, the second one uses the se-
quence W t�1

t�n+1. For training these NNs the targets are taken from
the topic labeling of the training stories. A simple way to represent
a n-word sequence with the words taken from a vocabulary of size
V is to use a V � n component binary feature vector with only n
bits nonzero; these bits indicate the index of each word in the se-
quence. Although this forms a very large vector backpropagation’s
gradient computation can still be performed fast because a large
number of features are zero, they do not influence the gradient.
The advantageous aspect of this NN approach for topic indexing is
the ability to scale the NN complexity with respect to the amount
of training data by adjusting the number of hidden nodes. Thus,
a robust way of probability parameter sharing can be incorporated
in the NN structure.

2.1. Unigram based neural networks for topic classification
An additional common way to cope with the problem of limited
training data that can be applied to the proposed NN approach as
well as to traditional topic-dependent models is to reduce the n-
gram order down to n = 1 (i.e. a unigram). Here, the NN that
models the probabilities in the nominator of Eqn. (5) makes use
of the single word w (e.g. represented by a V -component binary
vector) as network input; the NN output approximates the topic
posterior probability given this word, i.e. Oj(w) = P (jjw).

In the unigram case, the denominator in Eqn. (5) collapses into
P (j), i.e. the prior probability that a word occurs in a story that is
related to the j-th topic. Given the NN model for P (jjw) the prior
probability can be obtained by averaging the probability over all
words that are contained in the stories of the training corpus.

P (j) =
X

w2V ocab:

P (jjw) � P (w) �
1

T
�

TX
t=1

Oj(wt) (6)

Since all these prior probabilities can be stored in a table there is
no need to construct a second NN in this case. It must be noted
that in general P (j) differs from P (Topicj), because P (j) refers
to the words in stories related to Topicj , hence it is influenced
by the length of the stories (i.e. the number of contained words),
and the probability P (Topicj) refers to the occurrence of stories
without taking their length into account.

Now, the most probable story topic can be determined by

argmax
j

(
P (Topicj) �

TY
t=1

�
Oj(wt)

P (j)

��
)

(7)

As in [7], the tuning parameter � is used to compensate for the
incorrect unigram independence assumption.

Eqn. (7) is directly related to the speech recognition approach
using the hybrid system in [2] where phone posterior probabilities
generated by a NN are divided by phone prior probabilities.

2.2. Neural network smoothing
Cross-validation is a common method to avoid parameter overfit-
ting when training NNs as pattern classifier [2]. Various smooth-
ing methods [4] can be used in general to produce robust proba-
bility estimates for (topic-dependent) language models. A simple
smoothing method that avoids zero probabilities is to increase the
frequency counts of all possible discrete events by one (one-plus
smoothing [4]).

For backpropagation training of topic indexing NNs as they are
used in Section 2.1. the one-plus smoothing method can be applied
in a naive way: the training data set is augmented by all possible
topic-word-pairs; this increases the training set (and training time)
by V � J samples. In this case, the ideal target value at a fixed NN
output node for a fixed word at the NN input will be zero J � 1

times and 1:0 once. Since the usual NN training criteria (mean
squared error, cross entropy) are additive for each sample the same
smoothing impact on the gradients can be obtained faster as fol-
lows : two gradient sums are calculated for all of the V different
words in the vocabulary by the backpropagation method: one for
the target vector containing 0.0 components and one for the tar-
get vector containing 1.0 components. Finally, the first gradient
term is added to the training data gradient with a weighting fac-
tor of J � 1, the second expression is weighted by 1.0. Thus, the
additional effort for smoothing can be reduced to 2 � V .

3. MULTIPLE TOPIC INDEXING
In general, stories like broadcast news texts deal with a couple of
topics instead of one single topic; different words in a story are
related to different topics and the major part of a story’s words
can not be assigned to any specific topic (general language words).
Thus, in [7] the indexing task is extended to determine the most
probable set of topics (out of I different sets) for a given story.
A set-dependent unigram approach is adopted in [7]; each set-
dependent unigram probability is modeled as a mixture of topic-
dependent unigrams using all the topics being contained in the set:

P (wjSeti) =
X
j

Topicj2Seti

P (jjSeti) � P (wjj) (8)

A unigram model P (wj0) for the Topic0 = general language
is a component of each mixture model.

In order to apply the neural network approach of Section 2.1.
that approximates P (jjw) by Oj(w) to the problem of topic set
indexing Eqn. (8) must be transformed by using Bayes rule into:

P (Setijw) =
X
j

Topicj2Seti

P (Setijj) � P (jjw) (9)

Eqn. (9) motivates the expansion of the topic indexing neural net-
work by one additional layer of weights in order to approximate the
topic set posterior probabilities P (Setijw) by the outputs ~Oi(w)
of the new network: The probabilities P (Setijj) can be inter-
preted as weighting connections between the j-th output node
(with Oj(w)) of the topic classifying network of Section 2.1. to
the i-th output node of the new network (with ~Oi(w)). If the net-
work outputs Oj(w) and the new weighting connections are con-
strained to have the probability properties (being positive and sum-
ming up to unity e.g. by application of the softmax function [3]) it
can be shown from Eqn. (9) that the new network outputs ~Oi(w)
will also have these properties. When the unconstrained output
weight parameters gj;i are used for connecting the j-th node with
the i-output node the constrained network outputs can be generated
by:

~Oi(w) =
X
j

Topicj2Seti

exp(gj;i)P
i0
exp(gj;i0)

�Oj(w) (10)

The new weight parameters gj;i as well as the parameters in the tra-
ditional NN can be determined by backpropagation training. To be
able to identify general language words the traditional NN makes
use of an additional output node with O0(w) that is connected to
all the topic set nodes (see Fig. 1). This approach allows the neural
network to identify topic mixtures in the training stories in an un-
supervised way; the distributions of the NN outputs are expected to
be shaped much sharper compared to the approach of Section 2.1..

This new method of NN training can be generalized to
(semi-)supervised connectionist classifier design when there is un-
certainty about the specific classes of the training patterns. As
shown in Fig. 1 the traditional NN structure is expanded by an
additional layer of weights (that must have properties of probabil-
ities). For each pattern class a new output node is used; when the
pattern class of a training sample is not known exactly a set node
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Figure 1. Expansion of the connectionist classifier architecture
to cope with sets of pattern classes.

that contains all classes that might suit this sample is introduced.
After training of this new structure the intermediate outputs Oj(x)
of the traditional NN can be used as approximated class posterior
probabilities.

Now, by using the network outputs Oj(x) the optimal topic set
of a given story can be determined by

argmax
i

8><
>:P (Seti) �

TY
t=1

X
j

Topicj2Seti

P (jjSeti)
� �

Oj(wt)

P (j)

9>=
>; (11)

with the exponential constant � to compensate the independence
assumptions [7].

In practice, the number of different topic sets is very large.
This makes the estimation of reliable priors P (Seti) and mixture
weights P (jjSeti) difficult, and the search for the best topic set
becomes intractable. Thus, generating a topic set as a list of the
N-best topics by considering each topic separately is an alternative
approach that has proven to yield similar performance as Eqn. (11)
in [7]:

argmax
j

(
P (Topicj) �

TY
t=1

�

�
P (j)� �

Oj(wt)

P (j)

�)
(12)

As mentioned above, in the mixture NN training framework the
network outputs are expected to be quite sharp (many zero out-
puts); thus, in Eqn. (12) as in [7] the filter function �(x) = x if
(x > �) or � if (x � �) is used to avoid zero probabilities for
words in a story that are not related to the topic under consider-
ation.

4. EXPERIMENTS

As a story database for the experiments the transcriptions of Mar-
ketPlace business radio broadcast news shows are used. The tran-
scriptions are taken from the DARPA HUB4 1995 CD-ROMs.

The training data set consists of 105 stories from 10 different
news shows, comprising 43,000 words. This is a very small corpus
of stories for training topic models, but since audio data is avail-
able for all these texts in future experiments comparisons using
transcriptions generated by speech recognizers can be obtained.
The test sets are subdivided into 6 news shows as validation data
and 5 news shows as evaluation test data. The validation part con-
sists of 26,000 words in 62 stories; the test set consists of 22,000
words in 43 stories.

Each story is labeled by one up to twelve topic indices (an addi-
tional label for the general language topic is assigned to each story

automatically). In total 62 different topics (excluding general lan-
guage) are used for system training; on the average 5.6 topics are
assigned to a story in the training data set. The out-of-topic rate is
4% and 7% in the validation and the test data, respectively.

Because the size of the training data set is quite small all the
words in the transcriptions are preprocessed to generate word base-
forms by removing common suffixes like ”-ed”, ”-ing”, etc. This
yields a vocabulary size of approximately 5,000 word baseforms
in the training transcriptions. The out-of-vocabulary rate in the
validation and in the test sets is about 10%.

4.1. Neural network training
In the single topic training approach (Section 2.1.) two-layer NNs
with 63 output nodes (for the 62 topics plus general language)
and the softmax output function are trained to minimize the mean
squared error criterion. The number of hidden nodes are set to
3, 10 and 50 corresponding to approximately 15,000, 50,000 and
250,000 weight parameters, respectively. The words in the sto-
ries that are related to several topics are used as multiple training
patterns, yielding 300,000 training patterns totally.

As a baseline system a traditional topic dependent unigram lan-
guage model (with 315,000 parameters) is created from the train-
ing stories.

For the experiments in the mixture of topics training framework
(Section 3.) the NNs trained as explained above are used to initial-
ize the new network structure. A new layer of weights that imple-
ments the mapping of Eqn. 10 is added to the network as shown in
Fig. 1. The number of topic sets (i.e. the new network output layer
size) is 103. After training of this new system the output weight
layer is removed and the outputs Oj(w) of the original NN are
used as topic posteriors.

The tuning parameters �, � and � are optimized on the valida-
tion set.

4.2. Results
The different behavior of NNs that are trained by the single topic
assumption and of NNs that make use of a mixture of topics struc-
ture is shown in Tab. 3. For some characteristic words the most
probable topic and the corresponding topic probability generated
by the NNs are given. The traditionally trained NN yields low
probabilities and general language is chosen frequently because of
its high prior probability in the training set. In the mixture frame-
work the NN generates very high probabilities in many cases what
corresponds to the identification of specific key words to a topic.
General language is assigned to words that occur in many different
stories.

Since the test stories are labeled by multiple topics the per-
formance assessment is based on sets of topics generated by the
neural networks. N-best lists are generated for the traditionally
trained systems by using the decoding rule Eqn. 7; for the NNs that
are trained by integrating the topic mixture assumption Eqn. 12 is
used. The at-least-one accuracy [7] (that is the fraction of stories to
which at least one of the found topics is related) is shown in Tab. 1.
The topic indexing precision [7] (that is the fraction of found topics
that are in the set of annotated topics) is shown in Tab. 2.

For the NNs as well as for the traditional unigram model param-
eter smoothing improves the performance on the unseen test sto-
ries significantly. The large neural network with 50 hidden nodes
yields higher precision and accuracy than the unigram model for a
small number of topics per story. The precision of the top-choice
is improved from 53% to 63%. When the size of the generated
n-best list is increased both systems perform similar. In contrast
to [7] the usage of topic models that are trained under the mix-
ture of topic assumption does neither improve the precision nor
the accuracy. Although the new models seem to provide a better
discrimination on the level of single words (as shown in Tab. 3)
the performance is worse on the level of whole stories. The fact
that the mixture model performance even degrades on the training
data gives evidence that the simplifications made in Eqn. 12 are a
bad approximation of the optimal decoding rule in Eqn. 11; in par-
ticular, the usage of the global priors P (j) instead of the different



model num. training set validation set test set
hidden 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

unigram - 100 100 100 100 100 48 71 82 88 91 42 58 70 86 98
unigram (smoothed) - 99 99 99 99 100 65 79 84 90 92 53 74 84 91 95

NN 3 63 79 88 90 92 48 68 79 82 89 42 60 77 81 84
NN 10 95 100 100 100 100 58 76 85 90 92 44 56 70 81 84

NN (”1+”-smoothed) 10 83 96 98 98 99 60 76 81 85 89 49 72 77 88 95
NN 50 100 100 100 100 100 56 79 85 87 87 44 60 79 95 98

NN (”1+”-smoothed) 50 98 99 99 99 99 66 77 84 85 89 63 81 86 91 95
mixture NN 50 74 84 88 92 94 48 66 68 79 84 42 49 56 81 84

Table 1. At-least-one accuracy (given in percent) for topic-dependent unigrams and for neural networks with varying hidden layer
size. The number of recognized topics per story runs from 1 to 5.

model num. training set validation set test set
hidden 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

unigram - 100 100 98 94 88 48 48 45 44 41 42 42 40 42 40
unigram (smoothed) - 99 98 95 90 84 65 57 52 52 46 53 52 45 44 41

NN 3 63 52 44 44 41 48 45 41 38 38 42 34 33 31 28
NN 10 95 95 89 83 77 58 56 53 50 45 44 40 37 40 39

NN (”1+”-smoothed) 10 83 80 76 71 64 60 54 46 42 39 49 49 43 41 37
NN 50 100 100 98 93 87 56 56 52 47 44 44 42 44 44 40

NN (”1+”-smoothed) 50 98 95 94 88 81 66 55 51 46 43 63 56 47 43 38
mixture NN 50 74 56 46 40 36 48 41 38 36 35 42 31 29 33 32

Table 2. Precision (given in percent) for topic-dependent unigrams and for neural networks with varying hidden layer size. The
number of recognized topics per story runs from 1 to 5.

mixture weights P (jjSeti) is unreasonable in this case.

word mixture training traditional training
topicmax Oj(w) topicmax Oj(w)

a gen. language 0.91 gen. language 0.14
acre animal 1.00 environment 0.16

amphitheater entertainment 1.00 interview 0.38
apartheid south-africa 0.93 gen. language 0.11

apex conference 0.48 conference 0.10
are gen. language 0.86 gen. language 0.14

arkansas scandal 0.74 scandal 0.18
assassinate crime 0.83 crime 0.13
bankrupt business 0.99 company 0.28
before gen. language 0.66 gen. language 0.13
bird animal 1.00 environment 0.17

blackout energy 1.00 gen. language 0.22
bootleg china 1.00 asia 0.12
broker stock-market 0.83 shopping 0.21

Table 3. A selection of several words and their most proba-
ble topic determined by the NNs (10 hidden nodes) using the
traditional training and the mixture training method, the cor-
responding NN output value is given.

5. CONCLUSIONS

This paper presented an integration of neural networks in a proba-
bilistic topic indexing framework. A method that allows a weight
parameter smoothing within the backpropagation training proce-
dure and a new approach to identify mixtures of topics in stories by
a NN was proposed. These innovations can be applied to improve
the performance of general NN based pattern recognition systems.
Due to parameter reduction and smoothing the topic indexing per-
formance of the NN is better than the traditional unigram approach
for a small number of identified topics on a limited data set. The
NN that is based on the topic mixture assumption is able to im-
prove the discrimination at the word level but on the story level it
performs worse. A larger corpus of stories will be used in the fu-
ture to investigate the limitations of mixture NN approach in more
detail.
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