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ABSTRACT

In this communication we address the problem of detection and
tracking of moving objects for surveillance or occupant detection
systems. The primary goal in this framework is the motion estima-
tion of the extracted foreground. To overcome the drawbacks char-
acteristic of classical block matching techniques, this contribution
presents a new feature based hierarchical locally adaptive multi-
grid (HLAM) block matching motion estimation technique based
on a foreground detection procedure using an adaptive recursive
temporal lowpass filter. It leads to a robust and precise motion
field estimation, close to the true motion in the scene. The simu-
lation results highlight the superior performance of the proposed
method. It yields better performance than the classical exhaustive
search (ES) and the modified three-step search (MTSS) technique
in terms of the peak signal-to-noise ratio (PSNR).

1. INTRODUCTION

Detection and tracking of moving objects in image sequences is a
substantial prerequisite for the analysis of a scene. In this contri-
bution we present a feature based motion estimation technique de-
veloped for surveillance and occupant detection applications con-
sisting of two main steps. In the first step we use a novel proce-
dure which is able to detect and track independently moving ob-
jects and to indicate their instantaneous positions as well as ap-
parent shapes with high accuracy, even for temporarily stationary
objects. The approach is robust against temporal variations of the
background illumination. It works also very well on noisy im-
age sequences [1]. In the second step a hierarchical locally adap-
tive multigrid block matching motion estimation technique is pre-
sented, which overcomes the typical drawbacks of classical block
matching techniques, namely block artefacts and unreliable mo-
tion fields in the scene. It adapts to the spatial content of the scene
while estimating the motion only for the detected foreground. The
two steps of the procedure will be discussed in Sections 2 and 3.
Afterward some simulation results are presented that verify the su-
perior performance of the proposed method.

2. MOVING OBJECT DETECTION AND TRACKING

All algorithms for object detection which will be investigated in
this contribution belong to the class ofreference image methods
[1]. These methods are very suitable for surveillance applications
with low processing power. It is assumed that the images are taken
by a stationary surveillance camera system with fixed focal length.
Using this assumption, the changes in the captured images will
be assumed to originate from the intrinsic motion of the objects

and/or the variations of illumination. A reference imageb(r; t),
designated as background, will be compared with the actual input
imageg(r; t) to compute the binary mask image�(r; t) which in-
dicates the membership of each pixel in the image to one of the
two classes, namely back- or foreground. The indices for horizon-
tal, vertical, and temporal directions will ber = (x; y)T and t;
respectively. Before introducing the proposed algorithm, we will
discuss several algorithms known from the open literature.

The simplest traditional approach to the detection of moving
objects is the so-called difference method which is based on com-
puting the absolute difference of consecutive frames by forming
and applying a suitable chosen constant threshold� to this abso-
lute difference in order to generate the binary mask�(r; t). This
method is thus relying on the assumption that the variation of il-
lumination is normally slow when compared to the intensity vari-
ations caused by moving objects and that the fast variations in the
spatiotemporal intensity are due to local motions. A major draw-
back of this approach is that slowly moving or stationary objects
cannot be detected as foreground. Hence, the difference method
produces an ambiguous mask image. The mask image may con-
tain changes due to the object uncovering background, changes
due to the object covering up background, and changes due to the
object movement. The mentioned ambiguity can be avoided by es-
timating the background image using a recursive temporal lowpass
(RTL) filter [2]

b(r; t) = �g(r; t) + (1� �)b(r; t� 1); 0 � � � 1; (1)

where� denotes the filter coefficient which controls the speed of
the background image adaption to the changes of the input im-
age. As nonstationarities in temporal signals are often due to ob-
ject motion, a background extraction can be accomplished using
a simply temporal lowpass filtering which removes temporal im-
pulses and edges. For� = 1 the RTL-filter method yields the dif-
ference method. Thus the difference method is just a special case
of the RTL-filter method. An advantageous characteristic of this
type of filter is that uncorrelated noise is suppressed. The draw-
backs of this approach are that objects exhibiting stop-and-go mo-
tion are adapted to the background which yields again ambiguities
of the mask images, and that the choice of� is critical for de-
termining the performance of the algorithm. In the framework of
Kalman-filter theory the equation (1) can be interpreted as a re-
cursive estimation of the background. The input image sequence
can be regarded as a background image sequence contaminated by
statistical noise and the moving objects. The system is controlled
by a Kalman-Filter in order to adapt quickly to the illumination
changes in the background, and to perform a slow adaption inside
the regions including the moving objects [3].
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Figure 1:Flowchart of the ARTL-filter method.

2.1. The ARTL-Filter Method

The algorithms presented so far have the drawback that the re-
quired parameters are not adapted automatically to the observed
scene. The parameters have to be set manually, which is not very
useful for stand-alone surveillance systems. The performance of
the algorithms is, for instance, essentially dependent on the choice
of the threshold separating the foreground from the background. In
most cases a fixed threshold is used, which yields unsatisfactory
results. Furthermore, the filter gains are constant and cannot be
adapted to the varying scenes. We propose a novel method which
adapts the required parameters automatically to the observed scene.
The method is based on the use of a recursive temporal lowpass
filter, as discussed above, but it employs an adaptive filter gain
(r; t). This depends on the locationr and the timet

b(r; t) = (r; t)g(r; t) + (1� (r; t)) b(r; t� 1): (2)

We call the proposed filteradaptive recursive temporal lowpass
filter abbreviated as ARTL-filter. The flowchart of the method em-
ploying the ARTL-filter is depicted in Figure 1. The filter gain is
computed as

(r; t) =

8><
>:
g��m(r; t� 1) if �(r; t) � �(t� 1);

g� (�(r; t)) (1� �m(r; t� 1))

+ g��m(r; t� 1) else.
(3)

�m(r; t) is the filtered binary mask, where the elimination of small
regions that have not changed within changed regions and vice
versa is performed using mathematical morphology.�(r; t) is the
absolute difference of actual input imageg(r; t) and previous es-
timated background imageb(r; t� 1). g�(�(r; t)) andg� are the
back- and foreground gain, respectively. The background gain de-
pends on the selected threshold, and the absolute difference of the
actual input image and the previous computed background image

g�(�(r; t)) = exp

�
�(r; t)

�(t� 1)

�
: (4)

The higher the absolute difference, the lower may be the back-
ground gain, assuming that the gray value changing in the back-
ground image is slow. The background gain must be low, if the
selected threshold is low, to guarantee that the background is not
adapted to the foreground. The foreground gain is constant and
has to be sufficiently low. It allows the control over the foreground
adaption. A too high foreground gain would adapt objects exhibit-
ing stop-and-go motion completely to the background.

When taken the absolute differences(r; t) the borders be-
tween the subregions appear as cracks in the output mask. To
avoid these cracks, the absolute values of the difference images
are lowpass filtered. Using a binomial operator the smoothing can
be performed very efficiently on a multigrid data structure. The
lowpass filteringfills the cracks and makes the mask homogenous.
It also suppresses uncorrelated noise in the difference image.

�(t) is the adaptively computed threshold adjusted to the ab-
solute difference imagesm(r; t). In an ideal case the histogram of
the gray levels ofsm(r; t) is bimodal. In this case, a threshold can
be chosen as the gray level that corresponds to the valley of the his-
togram. In our situations the gray level histogram is not bimodal.
Therefore, an optimal threshold is computed using the discrimi-
nant analysis [4]. The threshold selection method is nonparamet-
ric and unsupervised. In this method, the threshold operation is re-
garded as a separation of the pixels of the imagesm(r; t) into two
classesCf andCb, namely the fore- and background, at gray level
�. The optimal threshold�opt is determined by maximizing the fol-
lowing discriminant criterion measure, namely�(�) = �2B(�)=�

2

T ,
where�2B and�2T are the between-class and the total variance,
respectively. The procedure utilizes only the zeroth- and the first-
order cumulative moments of the gray level histogram ofsm(r; t).
To ensure a stable thresholding we set upper�max and lower ranges
�min for the final threshold�(t).

3. FEATURE BASED MOTION ESTIMATION

Using block matching motion estimation, the current frame is di-
vided into nonoverlapped rectangular blocks and the same vector
is assigned to all pixels within a block. It is assumed that the im-
age is composed of rigid objects in translational motion, justified
by the fact that complex motion can be decomposed as a sum of
translational components. The relative position of the closest block
in the previous frame defines the motion vector associated with the
present block. The displacement vectorp is evaluated by matching
the information content of a measurement windowW with that of
a corresponding measurement window within a search areaS in
the previous frame, and by searching the spatial location minimiz-
ing the matching criterion [5]

p = argmin
p2S

X
r2W

jg(r; t)� g(r� p; t� 1)j : (5)



We have to distinguish between the notions2D motion fieldand
optical flow. The former is the projection of the 3D motion in the
scene on the 2D image plane, and the latter is the field associated
with the spatiotemporal variation of intensity. In an ideal case, the
optical flow corresponds to the 2D motion field. To bound the max-
imum displacement an object can move between two frames, the
search area is limited to a maximum displacement ofD pixels per
frame for both spatial directions, resulting in(2D + 1)2 locations
to search for the best match to the present block. This exhaustive
search procedure finds the optimal vector in the specified search
area, but the amount of required operations are evidently too high
for real time applications. Therefore, a variety of fast algorithms
were proposed to reduce the computation effort by limiting the
number of locations searched, such as the three-step search, one-
at-a-time search, orthogonal search, and genetic search. These al-
gorithms rely on theunimodal error surface assumption, namely
that the distance measure increases monotonically around the loca-
tion of the optimal vector. In reality the distance measure surface
has several minima in which the search can be entrapped instead
of the global minimum, due to the aperture problem, the incon-
sistent block segmentation of moving objects and background, the
textured local image structure, and the luminance change between
frames.

The classical block matching techniques often produceinfe-
rior motion vector fields as a result of fixed measurement window
sizes. The obtained motion vector field is optimal in the sense of
a distance measure, but habitually does not correspond to the true
motion in the scene. Therefore, we propose to use a hierarchical
search, which uses diverse measurement window sizes at different
levels of the hierarchy [6]. The resulting motion vector field is
reliable and homogeneous, close to the true motion in the scene,
and the computational complexity is reduced drastically. This ro-
bust technique is able to cope with large displacements induced by
fast moving objects at low computational power, ideally for object
tracking in surveillance applications, and produces better perfor-
mance than the ES and MTSS technique in terms of PSNR. The
basic idea of the hierarchical method is to estimate a coarse and ro-
bust motion vector field at the first level of the hierarchy containing
the basic motion. Then this is used as an initial estimate and fur-
ther refinement is carried out with reduced measurement windows
in the subsequent levels. Hereby, the local minimum problem is
diminished based on the successive refinement of motion vector
candidates. As small measurement windows are not capable of es-
timating true motion, especially in the presence of large amounts
of motion, and large measurement windows cannot give accurate
estimates if the constituent parts within them have different spe-
cific motion parameters, we use thecoarse-to-finetechnique. In
order to take account the mentioned requirements, the proposed
technique starts with a large measurement window size at the first
level to estimate the major part of the displacement, decreasing
the size from one level to the next level of the hierarchy to refine
the resolution of the vector field. At each level of the hierarchy
a separatelog(Du + 1)-step search technique is used, where the
maximum update displacementDu is decreased from one level to
the next level of the hierarchy (MTSS technique). The number
of required steps isN = [log

2
(Du + 1)], where[x] denotes the

smallest integer larger or equal tox. The stepsize for thenth step is
given by�(n) = 2N�n. ForDu = 7 thelog(Du+1)-step search
technique yields the TSS technique. To accelerate the search win-
dow procedure we use a dynamic stepsize adjustment. The step-
size convergence ratio, which is defined asRs = �(n+ 1)=�(n),

median

duplication

Figure 2:Down conversion of the central block using duplication
and median of the neighborhood.

is fixed at1=4 for the standardlog(Du+1)-step search technique.
Instead we use a dynamical stepsize convergence ratio that can
vary between two modes, namely the fast(Rs = 1=2) and nor-
mal mode(Rs = 1=4). The switching is controlled by following
criterion

Rs =

(
1=2 if # < Ta,
1=4 else,

(6)

where# is the ratio between the smallest and second smallest dis-
tance measure obtained from the set of search positions in the
present step. This ratio is compared to the a priori selected thresh-
old Ta for discriminating the convergence modes(0 � # � 1). If
# is close to zero, a fast covergence is desired, because the search
direction is probably accurate.

In order to reduce the block artifacts, due to the assumption
that all pixels within a block have the same motion vector and to
speed up the estimation, we introduce a multigrid procedure. In
the first level of the hierarchy we split the image in nonoverlap-
ping rectangular blocks of sizeBi, wherei indicates the level of
hierarchy. These initial blocks are labeled according to their con-
tent, namely appertaining to the fore- or background, where no
motion estimation is performed on blocks belonging to the back-
ground, and their corresponding motion vectors are all zero. The
membership of each block is determined using following criterion

Li(j) =

(
0 if �i(j) < ",
1 else,

(7)

whereLi(j) denotes the label of the blockj in level i, �i(j) is
defined as the ratio between the number of pixels labeled as fore-
ground and number of total pixels in blockj, and" is a threshold
controlling the labeling(0 � " � 1). Li(j) = 0 means that
the blockj at leveli belongs to the background. For each level a
motion estimation is performed for the central pixel of the blocks
appertaining to the foreground, and the same motion vector is as-
signed to all pixels within their block. In the next level the blocks
labeled as foreground are splitted according to the quadtree man-
ner, and the membership of each splitted block is determined ac-
cording to the segmentation decision rule (7). Blocks previously
labeled as background are not processed. The corresponding mo-
tion vectors are downconverted to the finer grid and refined using
the median of actual and neighboring blocks, where blocks labeled
as background are not considered to incorporate a spatial consis-
tency of the motion field, and to avoid the propagation of wrong
motion vector estimates throughout the levels (see Figure 2). The
downconverted motion vector field serves as initial estimate for
the further refinement. The procedure iterates until the final level
or the minimum block is reached.



Table 1: Parameters of the HLAM motion estimation technique
(Ta = 0:5; " = 10%; B1 = 16 � 16). The resulting maximum
displacement is�25 pixels per frame.

Level i Wi Du;i oi �i

1 64� 64 15 4 4
2 32� 32 7 4 2
3 16� 16 3 2 1

In order to reduce the computational effort resulting from large
measurement windows, we introduce a subsampling in the mea-
surement window. Hence, the search procedure is still performed
on the original grid to avoid unreliable estimates. The subsampling
rate� is adapted to the measurement window size. By applying a
binomial smoothing filter of binomial ordero to the image, alias-
ing effects are avoided and the reliability of the estimated motion
vector field is improved. Herewith the risk of being trapped at a
local minimum of the distance measure is reduced.

4. SIMULATION RESULTS

To evaluate the performance of the presented algorithm, we have
used a test sequence for human tracking consisting of 50 frames
each exhibiting a size of256 � 256 pixels. In the scene a person
walks in the front of a wardrobe from the right to the left. The
results in Figure 3 clearly indicate the superior performance of the
ARTL-filter algorithm proposed in in this contribution. The shape
of the moving person is homogenous, nearly independent of slow
illumination changes, and does not vary significantly if the object
speed is raised, while the shadow which originates from the person
is not detected as foreground. In contrast to the RTL-filter and the
Kalman method, the ARTL-filter does not adapt objects moving at
stop-and-go to the background, and avoids the troublesome ambi-
guity of the generated masks. These are necessary requirements
for a surveillance system [1].

To verify the usefulness of the HLAM motion estimation tech-
nique, we compare it with the ES and MTSS technique. In our
contribution, we have used three hierarchy levels, each level con-
sisting of a separatelog(Du + 1)-step search technique. The pa-
rameters of the technique are tabulated in the Table 1. The ES and
MTSS technique were applied on a block size of16 � 16 pixels
with a maximum displacement ofD = 15 pixels per frame. The
performance comparison among the different techniques is based
on PSNR. Figure 3 shows the difference in PSNR with respect to
the ES technique. The average PSNR differences show that the
presented technique is slightly superior than the ES and MTSS
technique. The obtained motion vector field is more homogenous
and close to the true vector field, while reducing the typical block
artifacts.
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