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ABSTRACT
This paper deals with Kalman filter-based enhancement of a
speech signal contaminated by a white noise, using a single
microphone system. Such a problem can be stated as a
realization issue in the framework of identification. For such a
purpose we propose to identify the state space model by using
subspace non-iterative algorithms based on orthogonal
projections. Unlike Estimate-Maximize (EM)-based algorithms,
this approach provides, in a single iteration from noisy
observations, the matrices related to state space model and the
covariance matrices that are necessary to perform Kalman
filtering. In addition no voice activity detector is required unlike
existing methods. Both methods proposed here are compared
with classical approaches.

1. INTRODUCTION

So far, classical adaptive noise cancellation devices have used
two microphones. But speech enhancement using a single
microphone has become an active research issue.

Given a sequence of speech signal corrupted by an additive white
noise, our purpose is to retrieve the speech signal. This problem
occurs especially in free hand mobile phones and
teleconferences.

Various approaches based on Kalman filtering have been
referenced in the literature. They usually operate in two steps:

1. first, noise and driving process variances and speech
model parameters are estimated;

2. second, the speech signal is estimated by using Kalman
filtering.

In fact these approaches essentially differ in the way of choosing
speech model and estimating speech model parameters and noise
variances. In [1] the estimated speech parameters are obtained
from the clean speech, before being contaminated by white noise.
Then the authors use a delayed version of Kalman filter in order
to estimate speech signal. In [2] the proposed method provides a
sub-optimal solution which is a simplified version of the
Estimate-Maximize (EM) algorithm based on the maximum
likelihood argument. However noise variance is estimated during
silent period, which implies the use of voice activity detector.
Furthermore the estimation of the driving process covariance
requires the estimation of the observation correlation function. In
[3] the authors propose a solution to these various problems, that
especially occur for EM-based algorithms, by employing the
Kalman EM Iterative (KEMI) algorithm. In [4], [5] an alternative

approach is proposed. Indeed Kalman gain calculation is
computed without an explicit estimation of noise and driving
process variances. But the AR parameters are estimated by
solving the modified Yule-Walker equations, which needs the
estimate of the observation autocorrelation.

In this paper a new approach is presented. Indeed speech
enhancement process can be stated as a realization problem in the
framework of state space representation. Thus we propose to
enhance speech signal by using Kalman filtering and state space
system identification methods introduced by Van Overschee [6],
[7]. These methods are based on the concept of orthogonal
projections and use non-iterative subspace algorithms. This
approach has the advantage of directly providing, from noisy
observations, the matrices related to state space model and the
covariance matrices that are necessary to perform Kalman
filtering. Furthermore, unlike existing methods, no voice activity
detector is required to estimate noise variance. Besides no
observation covariance estimation is involved in the
determination of the driving process covariance matrix.

This paper is organized as follows: in section 2 we present the
state space model of the noisy speech signal and the Kalman
filter. In section 3 the principles of the methods are introduced.
In sections 4 and 5 a description of the algorithms is presented.
In the last section we give experimental results and compare both
methods proposed here with classical approaches.

2. NOISY SPEECH MODEL AND
KALMAN FILTERING

2.1 Model equations

Let us consider the speech signal )k(s  modeled as a n order AR

process:
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where s(k) is the kth sample of the speech signal;

y(k) the noisy observation;

v(k) the measurement noise;

w(k) the driving process;

aj the jth AR parameter.



This system can be represented by the following state space
model:
( ) ( ) ( )kwksA1ks +=+ (3)

( ) ( ) ( )kvksCky += (4)

where:

1. s(k) is the n×1 state vector:

( ) ( ) ( )[ ]Tks1nksks L+−= .

2. w(k), a n×1 vector, is defined as follows:

( ) ( )[ ]Tkw00kw L= .

3. A is the n×n transition matrix:
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4. w(k) and v(k) are zero mean gaussian white noise
sequences with respective covariance matrices Q and R
and cross variance matrix S.

5. C , the transition row vector, is defined as follows:

[ ]100C L= .

The standard Kalman filter provides the updating state vector
estimator [8]. However, the transition matrix A, the transition
row vector C and the variance matrices Q and R must be
estimated. Instead of directly determining the quadruplet
[A, C, Q, R], we can evaluate the following similar one [9]:

[ ] RR ,QTTQ,CTC ,ATTA T
T1

TT
1

T ==== −−−

where T is a non singular transformation.

Indeed, the relations (3) and (4) are equivalent to:

( ) ( )ksTks *= (5)

( ) ( ) ( )kwTksATT1ks 1*1* −− +=+ (6)

( ) ( ) ( )kvksCTky * += (7)

Given [AT, CT, QT, RT], we can then use the Kalman filtering.

2.2 Kalman filtering

We use standard Kalman filtering equations with the quadruplet
[AT, CT, QT, RT]. Even if the state space matrices are not
calculated in their canonical forms we can estimate speech signal

)k(ŝ as follows:

)k(ŝC)k( ŝC)k(ŝ *
T==  where )k(ŝ* is the )k(s* estimate.

In the next paragraphs we will present two non-iterative methods
determining the quadruplet [AT, CT, QT, RT] in order to perform
Kalman-based speech enhancement. Both methods are based on
Van Overschee’s state space identification approach [6] [7], the
fundamental concepts of which will be introduced in the next
paragraph.

3. PRELIMINARIES: PRINCIPLES OF
[AT,CT,QT ,RT] ESTIMATION

First of all let us consider the ( )1i2Ni −−×  noisy observation

Hankel matrices:
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And let us define subspace orthogonal projection operator as
follows:

( ) MMMLMM/L
1TT −

=  with L and M two subspaces.

These definitions being given, let us divide [AT, CT, QT, RT]
quadruplet estimation into [AT, CT] and [QT, RT] pair
estimations.

3.1 Principles of [AT, CT] estimation

The estimation of [AT, CT] can be seen as a realization
problem. Classical realization methods need the knowledge
of the observation covariance matrices and are based on the
factorization of the correlation matrix between Y0/i-1 and
Yi/2i-1 into the observability and controllability matrices
[10].

Alternative methods that avoid the knowledge of the observation
covariance matrix were proposed by Van Overschee [6], [7]. The
idea is to project Yi/2i-1 subspace onto Y0/i-1 subspace in order to
approximate the observability matrix of the system iΓ :
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The first step of this approach is to determine two sequences, Zi

and Zi+1, respectively from the projections 1i,01i2/i Y/Y −−  and

i,01i2/1i Y/Y −+ .

Zi  and Zi+1 can be considered as the outputs of a bank of a non-
steady state Kalman filters after i and i+1 time steps and verify:

ii1i,01i2/i ZY/Y Γ=−− (8)

1iii,01i2/1i ZY/Y +−+ Γ= (9)

with iΓ equal to iΓ  without its last row.

The second step consists in deriving the pair [AT, CT] from the
sequences Zi  and Zi+1, by solving the following least squares
problem [6], [7]:
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where the 
F

. is the Froebenius norm.



The matrix division of 
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[ ]TT C ,A .

3.2 Principles of [QT, RT] estimation

For both methods, we obtain the pair [QT, RT] from the residuals
ρ  of the least square solution of (10) [6]:
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4. ESTIMATION OF [AT, CT]: METHOD 1

If the matrices Zi and Zi+1 are known, we can determine [AT, CT]
as follows [7]:
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However such an approach cannot be implemented directly. This
is the reason why we introduce principal angles between
subspaces and principal vectors [7], [10].

Indeed, we can determine Zi from the principal angles between
the two subspaces Y0/i-1 and Yi/2i-1 and their principal vectors.

Let Pi denote the principal vectors of Y0/i-1, Qi those associated
to Yi/2i-1 and Si the principal angles between Y0/i-1 and Yi/2i-1.

Denote with the square matrix n
iS  the matrix Si with its n first

rows and columns, where n is the AR process order.

( ) n
i

2
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n
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In the same way, we can evaluate Zi+1 from Y0/i and Yi+1/2i-1.

Algorithm 1, that determines Zi and Zi+1, is based on the RQ
factorization of the 2i×(N-2i-1) noisy observation Hankel matrix,
Y0/2i-1, and quotient singular value decompositions [7].

Step 1: RQ Factorization:
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Step 2: quotient singular decompositions:
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with Xi is a non singular square matrix.

Denote with 1
iU  the matrix iU  with its n first columns.

( ) T1
2:1

T1
i

2
1

n
ii QUSZ =

T
1i1i1i

43

42

41

XSU

R

R

R

−−−=















 and T

1i1i1i
T
44 XTVR −−−=

( ) ( ) ( ) T1
3:1

T1
1i

2
1

n
1i

1
1i

1
i

2
1

n
i1i QUSXXSZ −−−

#−
+ =

where 1
iX is equal to 1

iX  without its last row and 
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Step 3: Determination of iΓ
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Step 4: Determination of [ ]TT C ,A
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TC  is defined from the first row of iΓ

5. ESTIMATION OF [AT,CT]: METHOD 2

In this method the evaluation of Zi and Zi+1 needs the estimation
of the projections 1i,01i2/i Y/Y −− , i,01i2/1i Y/Y −+  and iΓ  [6].

Indeed (8) and (9) are equivalent to:

( )1i,01i2/iii Y/YZ −−
#Γ= (11)

( )i,01i2/1ii1i Y/YZ −+
#

+ Γ= (12)

where #Γi denotes the pseudo inverse of iΓ

Algorithm 2 is a reformulation of N4SID algorithm (which
stands for Numerical Algorithm for Subspace State Space System
Identification) for state space model representing noisy speech
signal. It is based on the RQ factorization of the 2i×(N-2i-1)
noisy observation Hankel matrix, Y0/2i-1, and singular value
decompositions (SVD) [6].

Step 1: RQ Factorization:
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Step 2: Determination of the projections 1i,01i2/i Y/Y −−  and

i,01i2/1i Y/Y −+
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Step 3: Determination of iΓ

We can approximate iΓ  by computing the SVD of

1i,01i2/i Y/Y −− .

T
1i,01i2/i VUY/Y Σ=−−  and ( ) 2

1
n1
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Step 4: Determination of [AT,CT].

6. SIMULATIONS AND CONCLUSION

For a noisy speech signal sampled at 8 kHz, we first estimate the
quadruplet [AT, CT, QT, RT] according to the methods
developed in paragraphs 3, 4 and 5. Second we compare our
approaches to Paliwal’s method developed in [1], Gibson’s
iterative approach, [2] and the approach proposed by Gabrea in
[4] and [5].

Table 1 illustrates the performance of the various approaches,
from 200 tests.

Input SNR -10 -5 0 5 10

Output SNR
Paliwal’s Method

12,37 9,27 6,76 4,8 3,34

Output SNR
Method n°2

11,30 8,51 6,34 4,52 3,06

Output SNR
Gibson's Method

11,30 8,45 6,22 4,51 3,14

Output SNR
Method n°1

11,10 8,32 6,21 4,45 3,03

Output SNR
Method [4], [5]

10.48 8.13 5.78 3.50 1.57

Table 1: SNR GAIN for VARIOUS INPUT SNR (dB)

Paliwal's method stands as a reference since the AR parameters
are estimated from the noise free signal. Furthermore noise
model variance is directly obtained from the white noise
sequence as it is separately available [1].

Gibson's approach needs three to four iterations to get the highest
SNR gain. But the iteration number that provides best results is a
priori unknown.

In this context we can point out the fact that both methods
presented here provide, in one iteration, significant SNR gain.
Unlike EM-based algorithms, no other iteration is necessary to
improve the estimate of the enhanced speech. In addition no
voice activity detector is required. Last no covariance
information is involved in the estimation of the driving process
covariance matrix.

Figure 1 shows an example of enhancement of a speech signal
corrupted by white noise. The noise free speech, the noisy speech
and the enhanced speech are given in figure 1.

Figure 1: Example of enhancement speech corrupted by
white noise (Input SNR=0dB)
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