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ABSTRACT

This paper deals with frequency estimation in the 2-D case when
one has only few data points. We propose a method to estimate
the frequencies of a sum of exponentials. This method is based on
an original set of 2-D linear prediction models with new regions
of support derived from the standard quarter plane support region.
These models define various spectra which are finally combined
by computing their harmonic mean. This method benefits from
the subspace decomposition of the covariance matrix to perform
well. It is demonstrated that the new regions of support improve
the spectrum geometry and the estimation accuracy compared to
the classical quarter plane (QP) support regions.

1. INTRODUCTION

Linear prediction is a powerful and interesting tool in spectral anal-
ysis. In the 1-D case, Kumaresan and Tufts [3] proposed to esti-
mate the signal frequencies from a subspace decomposition of the
covariance matrix which leads to good results in comparison with
the nonparametric methods. For 2-D signals, various linear predic-
tion models have been developed. Four classical regions of support
(quarter plane, nonsymmetric half plane, symmetric half plane and
full plane) are referenced in litterature [4].
Recently new regions of support based on a modification of the
standard quarter plane have been proposed and combined in [1]
by Alata. These multiple models developed for a multichannel ap-
proach improve the estimation accuracy and the shape of the spec-
trum.
In this paper we propose a modification of this method to locate
the frequencies of a 2-D signal modeled by a sum of complex
exponentials in noise. We first present the signal model and the
corresponding covariance matrix. We write the normal equations
related to the new regions of support defined from the classical
quarter plane. The harmonic mean of the corresponding spectra
provides a new spectrum. We then develop a method to solve the
normal equations in order to compute the spectral estimate. This
method is based on the subspace decomposition of the covariance
matrix and presents a low computational cost. We finally provide
some simulation results to illustrate the improvement brought by
the multiple support regions-based approach as compared to the
classical QP one.

2. LINEAR PREDICTION

We begin with the following signal model:(
y(m;n) = x(m;n) + b(m;n);
0 � m � M � 1;
0 � n � N � 1;

(1)

where the noiseless signalx is defined by

x(m;n) =

KX
k=1

ak exp[j2�(f1km+ f2kn) + j'k] (2)

and the noiseb is white gaussian with variance�2.

The data covariance matrixR is defined as follows:

R =

2
664

R(0) R(�1) � � � R(�P+1)

R(1) R(0) � � � R(�P+2)

...
...

...
R(P�1) R(P�2) � � � R(0)

3
775 ; (3)

where

R(m) =

2
4 r(m; 0) � � � r(m;�Q+ 1)

...
...

r(m;Q� 1) � � � r(m; 0)

3
5 : (4)

The matrixR is Toeplitz - block Toeplitz with elements

r(p; q) = r
�(�p;�q)

= Efy(m; n)y�(m� p; n� q)g

=

KX
k=1

a
2
ke

[j2�(f1kp+f2kq)] + �
2
�(p; q) (5)

Consider now the 2-D linear prediction problem for the data (1).
This takes the form

ŷ(m;n) = �
X
(p;q)

X
2


�p;qy(m � p; n� q) (6)

whereŷ represents the predicted value of the signal from points
within some region of support
. A typical region of support is
the quarter plane shown in Fig. 1. For this support region, the
coefficients are the solution to the normal equations:

R �1 = e1: (7)
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Figure 1: First Quarter Plane

The coefficient vector�1 is given by the following relation:

�1 =
h
�
(1)
0;0 ; � � � ; �

(1)
0;Q�1; � � � ; �

(1)
P�1;0 ; � � � ; �

(1)
P�1;Q�1

iT
(8)

where�1(1) = �
(1)
0;0 = 1, and the vectore1 is defined by

e1 =
�
�
2
e ; 0; � � � ; 0

�T
(9)

with �2e denoting the variance of the prediction error. The lin-
ear prediction filter can be used to locate complex exponentials by
forming the following spectrum:

P1(f1; f2) =
�2e

sH(f1; f2)�1�
H
1 s(f1; f2)

(10)

where

s =
�
1; � � � ; ej2�f2(Q�1)

; � � � ;

ej2�f1(P�1); � � � ; ej2�(f1(P�1)+f2 (Q�1))
�T

: (11)

If a single quadrant filter is used, the spectral estimate has poor
resolution and an asymmetric form. Therefore various researchers
have been motivated to consider combined spectral estimates
based on multiple regions of support [2] [5]. The simplest com-
bination was proposed by Jackson and Chien [2] and is defined
by

1

P1;2(f1; f2)
=

1

2

�
1

P1(f1; f2)
+

1

P2(f1; f2)

�
: (12)

where the spectrumP2 is related to the region of support shown in
Fig. 2. Only two regions are necessary to compute the combined
spectrum since the 1st and 2nd support regions produce identical
results to the 3rd and 4th quadrants respectively.

To improve this method, Alata [1] has proposed the HVHM
method where multiple support regions are taken in the frame-
work of 2-D multichannel algorithms. In this paper we propose
a modification of this method for subspace decomposition-based
frequency estimation. This method leads to a very efficient com-
putational procedure.
We consider a set of regions of support
H;l; l = 0; 1; : : : ;Q�1,
as represented in Fig. 3. For these support regions, the normal
equations of linear prediction take the following form:

R �Hl = eHl; (13)
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Figure 2: Second Quarter Plane
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Figure 3: Region of support
H;l.

where the vectoreHl and�Hl are defined by

�Hl =
h
�
(Hl)
0;0 ; � � � ; �(Hl)0;l ; � � � ; �(Hl)P�1;0; � � � ; �

(Hl)
P�1;Q�1

iT
(14)

and eHl =
�
0; � � � ; �2e ; � � � ; 0

�T
: (15)

For the region
H;l, we have�Hl(l + 1) = �
(Hl)
0;l = 1 and the

term�2e appears in the corresponding location ofeHl. The spectral
estimate related to this region is given by

PH;l(f1; f2)
�2e

sH(f1; f2)�Hl�
H
Hls(f1; f2)

: (16)

Likewise, we can define a region of support
V;l as shown in
Fig. 4.
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Figure 4: Region of support
V;l.



We consider the corresponding linear prediction problem and spec-
tral estimate in a same way as previously. In that case we have

�V l(lQ+ 1) = �
(V l)
l;0 = 1: (17)

Finally, the combined spectral estimate computed from the support
regions
H;l and
V;l is given by the following realtion:

1

PH;V (f1; f2)
=

1

P +Q
� 

Q�1X
l=0

1

PH;l(f1; f2)
+

P�1X
l=0

1

PV;l(f1; f2)

!
: (18)

3. SUBSPACE DECOMPOSITION BASED-SOLUTION OF
NORMAL EQUATIONS

For the signal model (1), it is well known that the correlation ma-
trix has the form

R = S	SH + �
2
I; (19)

whereI is the identity matrix and	 = diagfa2kg. Thekth col-
umn ofS is s(f1k; f2k) and calledsk.
The first and second terms of the decomposition ofR, S	SH and
�2I, respectively represent the noiseless signal and the noise co-
variance matrices. IfK � P andK � Q, the first one has rankK.
The signal subspace is spanned by the columnssk of S, as well as
by the eigenvectorsuk corresponding to theK largest eigenvalues
dk of R. The noise subspace is spanned by the remaining eigen-
vectors which are orthogonal to those of the signal subspace. The
data covariance matrix can therefore be written as

R = USDSU
H
S + �

2
UNU

H
N ; (20)

and its inverse is given by the following relation:

R
�1 = USD

�1
S U

H
S +

1

�2
UNU

H
N : (21)

Let us consider first the regions of support
H;l. The correspond-
ing normal equations (13) are equivalent to

�Hl =
�
USD

�1
S U

H
S +

1

�2
UNU

H
N

�
eHl: (22)

By left multiplying (22) byUNU
H
N , we obtain

UNU
H
N�Hl =UNU

H
N

1

�2
UNU

H
NeHl (23)

since the signal vectors are orthogonal to the noise vectors. There-
fore we have

�Hl =
�2e

�2
UN� l+1 (24)

where� l+1 denotes the(l + 1)th column ofUH
N .

The relation�Hl(l + 1) = 1 finally implies that the vector�Hl is
given by

�Hl =
�Hl

�Hl(l + 1)
=
UN� l+1

k� l+1k
2

(25)

with k� l+1k
2 = �Hl+1� l+1. The solution for the coefficient vector

�Hl is a scaled projection ofeHl onto the noise subspace. Since
�Hl is orthogonal to all signal vectors,PH;l gives a clear peak at
the signal values.

In addition, the knowledge of the prediction error variance is re-
quired to computePH;l. For the region of support
H;l, we have

�
2
e = �

H

HlR�Hl (26)

from (13). Combined with (25) this relation becomes

�
2
e =

�Hl+1U
H
N RUN� l+1

k� l+1k
4

; (27)

which can be written as

�
2
e =

�2

k� l+1k
2

(28)

if the eigenvectors are orthonormal. This equation shows the
relation between the prediction error variance and the noise one.
This latter can easily be estimated by the mean of the eigenvalues
ofR corresponding to the noise subspace.

The solution for the coefficient vector�V l is found in a similar
way to be

�V l =
UN� lQ+1

k� lQ+1k
2
; (29)

and the variance of the prediction error corresponding to the sup-
port
V;l is estimated as follows:

�
2
e =

�2

k� lQ+1k
2
: (30)

4. SPECTRAL ESTIMATION RESULTS

In order to estimate the covariance matrixR, we define a Hankel
- block Hankel data matrixY as

Y =

2
664

Y(0) Y(1) � � � Y(M�P )

Y(1) Y(2) � � � Y(M�P+1)

...
...

...
Y(P�1) Y(P ) � � � Y(M�1)

3
775 (31)

whereY(m) is the following block:2
664

y(m; 0) y(m; 1) � � � y(m;N �Q)
y(m; 1) y(m; 2) � � � y(m;N �Q+ 1)

...
...

...
y(m;Q� 1) y(m;Q) � � � y(m;N � 1)

3
775 :

The corresponding estimated covariance matrix is given by

R̂ =
1

(M � P + 1)(N �Q+ 1)
YY

H
: (32)

We first consider a signal with two components as described in
Table 1. We estimated the spectraP1;2 andPH;V which are re-
spectively represented in Figs. 5 and 6. The multiple regions of
support improve significantly the geometry of the spectrum which
presents spurious peaks with a very small magnitude compared to
those of the spectrum generated from the standard quarter plane
models.
We also performed some Monte-Carlo simulations. The simula-
tion conditions are given in Table 2. The Root Mean Square Error
(RMSE) on the frequencyf11 is plotted in Fig. 7 as a function of
the Signal to Noise Ratio. The multiple regions of support improve
the estimation accuracy for all values of SNR.



5. CONCLUSION

In this paper, we propose new models of 2-D linear prediction.
The corresponding regions of support are based on a modification
of the standard quarter plane. They provide a spectral estimate
with better geometry than the classical QP support regions. In
addition the frequency estimationaccuracy is increased. To solve
the normal equations, we take advantage of the data exponential
model by using the subspace decomposition of the data covariance
matrix .
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Frequenciesf1k 0.2 0.3
Frequenciesf2k 0.2 0.3
Magnitudesak 1 1
Phases'k 0 0

(M,N)=(15,15)
(P,Q)=(6,6)

SNR = 10 dB

Table 1: Signal parameters.

Frequenciesf1k 0.22 0.28
Frequenciesf2k 0.24 0.25
Magnitudesak 1 1
Phases'k 0 0

(M,N)=(12,12)
(P,Q)=(4,4)

SNR: 10 to 20 dB by step of 1 dB
Number of Monte-Carlo runs: 400

Table 2: Simulation conditions.
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Figure 5: Spectrum̂P1;2 (dB).
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Figure 6: Spectrum̂PH;V (dB).
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Figure 7: Estimation off11.


